Skip to main content
Log in

Valuation of Cryptocurrency Without Intrinsic Value: A Promise of Future Payment System and Implications to De-dollarization

  • Original Article
  • Published:
Eastern Economic Journal Aims and scope Submit manuscript

Abstract

A random search-based model is proposed to study the valuation of cryptocurrency. We provide a unique approach to valuing cryptocurrency according to people’s acceptance probability of cryptocurrency. Although cryptocurrency is generally considered without intrinsic value, it can have value in an exchange economy. Cryptocurrency has shown huge potential as a future payment system to replace the US dollar’s position in international trade, our model, however, indicates that the value of cryptocurrency is fundamentally unstable, and thus, it has a long way to go before fulfilling its mission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. An alternative approach can be that the currency is divisible and the price level is determined endogenously based on a given stock of currency. However, this will significantly increase our model’s complications without explicit benefits.

  2. In other words, there is no assumption about the production function; there is no consideration for the trade-off between working and leisure, etc.

References

  • Alstyne, M.V. 2014. Why Bitcoin has value-evaluating the evolving controversial digital currency. Communications of the ACM 57(5): 30–32.

    Google Scholar 

  • Caginalp, G., and D. Balenovich. 1999. Asset flow and momentum: deterministic and stochastic equations. Philosophical Transactions of the Royal Society A 357: 2119–2133.

    Article  Google Scholar 

  • Caginalp, C., and G. Caginalp. 2018. Valuation, liquidity price, and stability of cryptocurrencies. Proceedings of the National Academy of Sciences USA 115: 1131–1134.

    Article  Google Scholar 

  • Caginalp, G., D. Porter, and V. Smith. 1998. Initial cash/asset ratio and asset prices: an experimental study. Proceedings of the National Academy of Sciences USA 95: 756–761.

    Article  Google Scholar 

  • Caginalp, G., D. Porter, and V. Smith. 2001. Financial bubbles: excess cash, momentum, and incomplete information. Journal of Psychology and Financial Markets 2: 80–99.

    Article  Google Scholar 

  • Diamond, P. 1984. A Search-Equilibrium Approach to the Micro Foundations of Macroeconomics. MIT Press.

    Google Scholar 

  • Duffie, D., N. Garleanu, and L.H. Pedersen. 2002. Securities lending, shorting, and pricing. Journal of Financial Economics 66(2–3): 307–339.

    Article  Google Scholar 

  • Duffie, D., N. Gârleanu, and L.H. Pedersen. 2005. Over-the-counter markets. Econometrica 73(6): 1815–1847.

    Article  Google Scholar 

  • Duffie, D., N. Gârleanu, and L.H. Pedersen. 2007. Valuation in over-the-counter markets. The Review of Financial Studies 20(6): 1865–1900.

    Article  Google Scholar 

  • Hendrickson, J.R., and W.J. Luther. 2017. Banning Bitcoin. Journal of Economic Behavior & Organization 141: 188–195.

    Article  Google Scholar 

  • Hendrickson, J.R., T.L. Hogan, and W.J. Luther. 2016. The Political Economy of Bitcoin. Economic Inquiry 54(2): 925–939.

    Article  Google Scholar 

  • Kehoe, T.J., N. Kiyotaki, and R. Wright. 1993. More on money as a medium of exchange. Economic Theory 3(2): 297–314.

    Article  Google Scholar 

  • Kim, T. 2015. The predecessors of bitcoin and their implications for the prospect of virtual currencies. PLoS ONE 10(4): e0123071. https://doi.org/10.1371/journal.pone.0123071.

    Article  Google Scholar 

  • Kiyotaki, N., and R. Wright. 1993. A search-theoretic approach to monetary economics. The American Economic Review 83(1): 63–77.

    Google Scholar 

  • Lagos, R., and G. Rocheteau. 2007. Search in asset markets: market structure, liquidity, and welfare. The American Economic Review 97(2): 198–202.

    Article  Google Scholar 

  • Mortensen, D.T., and C.A. Pissarides. 1994. Job creation and job destruction in the theory of unemployment. The Review of Economic Studies 61: 397–415.

    Article  Google Scholar 

  • Rietz, J. 2019. Secondary currency acceptance: experimental evidence with a dual currency search model. Journal of Economic Behavior & Organization 166: 403–431.

    Article  Google Scholar 

  • Seligman, J.S. 2015. Cyber currency: legal and social requirements for successful Issuance Bitcoin in Perspective. The Ohio State Entrepreneurial Business Law Journal 9(2): 263–276.

    Google Scholar 

  • Vayanos, D., and P. Weill. 2008. A search-based theory of the on-the-run Phenomenon. Journal of Finance 63: 1361–1398.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garrison Hongyu Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Symbols and Notations

$:

The fiat currency, the US dollar

B:

The cryptocurrency, representing the most popular cryptocurrency Bitcoin

r :

The (risk-free) discount rate, characterizing the time preference of agents.

u :

The utility from consuming one unit of the preferred consumption goods by an agent

x :

The probability of an agent willing to accept randomly met consumption goods

x 2 :

The probability of the “double coincidence of wants” for two agents

σ :

The meeting rate of agents in the exchange sector

Π $ :

The probability of accepting the dollar by a random agent with one unit of consumption goods

Π B :

The probability of accepting the cryptocurrency by a random agent with one unit of consumption goods, also interpreted as the value of the cryptocurrency

π $ :

The best choice function by a typical agent with consumption goods when facing the opportunity to sell the consumption goods for the dollar

π B :

The best choice function by a typical agent with consumption goods when facing the opportunity to sell the consumption goods for the cryptocurrency

ε $ :

The transaction cost between consumption goods and the dollar balance, paid by the buyer

ε B :

The transaction cost between consumption goods and the cryptocurrency balance, paid by the buyer

ε 1 :

The transaction cost for barter, paid by the buyer

α :

The arrival rate of a Poisson process, with which an agent produces one unit of consumption goods randomly drawn from the set of all consumption goods, also representing the economy’s productivity

C $ :

The total units of the dollar balance

C B :

The total units of the cryptocurrency balance

N 0 :

The number of agents in the production sector

N 1 :

The number of agents with one unit of consumption goods in the exchange sector

N $ :

The number of agents with one unit of the dollar balance in the exchange sector

N B :

The number of agents with one unit of the cryptocurrency balance in the exchange sector

µ 1 :

The fraction of agents in the exchange sector with one unit of consumption goods

µ $ :

The fraction of agents in the exchange sector with one unit of the dollar balance

µ B :

The fraction of agents in the exchange sector with one unit of the cryptocurrency balance

V 0 :

The value of an agent without consumption goods in the production sector

V 1 :

The value of an agent with one unit of consumption goods in the exchange sector

V $ :

The value of an agent with one unit of the dollar balance in the exchange sector

V B :

The value of an agent with one unit of the cryptocurrency balance in the exchange sector

Appendix B: Proofs of Propositions

Proof of Proposition 1

If µB is known, according to the definitions of µ$ in Eq. (3) and µB in Eq. (4), we obtain:

$$ \frac{{\mu_{\$ } }}{{\mu_{{\text{B}}} }} = \frac{{C_{\$ } }}{{C_{{\text{B}}} }} $$
(B-1)

Then Eq. (15) is derived as \(\mu_{\$ } = \frac{{C_{\$ } }}{{C_{{\text{B}}} }}\mu_{{\text{B}}}\).

According to the definition of µ1 in Eq. (5): µ1=1−µ$−µB, then, Eq. (16) is derived as:

$$ \mu_{1} = 1 - \frac{{C_{\$ } }}{{C_{{\text{B}}} }}\mu_{{\text{B}}} - \mu_{{\text{B}}} = 1 - \frac{{C_{{\text{B}}} + C_{\$ } }}{{C_{{\text{B}}} }}\mu_{{\text{B}}} $$
(16)

Next step, to derive the formulae for N1 and N0 when we know that N$ =C$ and NB=CB.

Apply the definition of µB in Eq. (4) again and then substitute C$ for N$ and CB for NB:

$$ \mu_{{\text{B}}} = \frac{{N_{{\text{B}}} }}{{N_{1} + N_{\$ } + N_{{\text{B}}} }} = \frac{{C_{{\text{B}}} }}{{N_{1} + C_{\$ } + C_{{\text{B}}} }} $$
(B-2)

Solve for N1 from Eq. (B-2), we obtain:

$$ N_{1} = \frac{{\left( {1 - \mu_{{\text{B}}} } \right)C_{{\text{B}}} - \mu_{{\text{B}}} C_{\$ } }}{{\mu_{{\text{B}}} }} $$
(17)

Plug N$ =C$, NB=CB, and \(N_{1} = \frac{{\left( {1 - \mu_{{\text{B}}} } \right)C_{{\text{B}}} - \mu_{{\text{B}}} C_{\$ } }}{{\mu_{{\text{B}}} }}\) into Eq. (6): N0+N1+ N$ + NB =1, we obtain:

$$ N_{0} = 1 - N_{1} - N_{\$ } - N_{{\text{B}}} = 1 - \frac{{\left( {1 - \mu_{{\text{B}}} } \right)C_{{\text{B}}} - \mu_{{\text{B}}} C_{\$ } }}{{\mu_{{\text{B}}} }} - C_{\$ } - C_{{\text{B}}} = \frac{{\mu_{{\text{B}}} - C_{{\text{B}}} }}{{\mu_{{\text{B}}} }} $$
(18)

Proof of Proposition 2

(1) We first prove that only Eq. (19) is independent and the other three equations (Eqs. 20, 21, and 22) are redundant.

Equation (21) can be reduced to µ1N$ = µ$N1, which exactly comes from the definitions of µ1 and µ$, i.e.,

$$ \frac{{\mu_{1} }}{{\mu_{\$ } }} = \frac{{N_{1} }}{{N_{\$ } }} $$
(B-3)

In the same way, Eq. (22) can be reduced to µ1NB = µBN1, which exactly comes from the definitions of µ1 and µB, i.e.,

$$ \frac{{\mu_{1} }}{{\mu_{{\text{B}}} }} = \frac{{N_{1} }}{{N_{{\text{B}}} }} $$
(B-4)

Equation (20) can be rearranged as:

$$ \sigma \mu_{1} x^{2} N_{1} + \sigma \mu_{\$ } x \, \Pi_{\$ } N_{1} + \sigma \mu_{{\text{B}}} x\Pi_{{\text{B}}} N_{1} = \alpha \, N_{0} $$
(B-5)

Substitute Eqs. (21) and (22) for the second and the third term of Eq. (B-5):

$$ \sigma \mu_{1} x^{2} N_{1} + \sigma \mu_{1} x \, \Pi_{\$ } N_{\$ } + \sigma \mu_{1} x \, \Pi_{{\text{B}}} N_{{\text{B}}} = \alpha \, N_{0} $$
(B-6)

Equation (B-6) is exactly Eq. (19). Thus, only Eq. (19) is independent.

(2) Then we show how to apply Eq. (19) to pin down µB.

Plug Eqs. (16), (17), and (18) into Eq. (19), we obtain:

$$ \alpha \frac{{\mu_{{\text{B}}} - C_{{\text{B}}} }}{{\mu_{{\text{B}}} }} = \sigma \left( {1 - \frac{{C_{{\text{B}}} + C_{\$ } }}{{C_{{\text{B}}} }}\mu_{{\text{B}}} } \right)x^{2} \frac{{\left( {1 - \mu_{{\text{B}}} } \right)C_{{\text{B}}} - \mu_{{\text{B}}} C_{\$ } }}{{\mu_{{\text{B}}} }}\; + \;\sigma \left( {1 - \frac{{C_{{\text{B}}} + C_{\$ } }}{{C_{{\text{B}}} }}\mu_{{\text{B}}} } \right)x \, \Pi_{\$ } C_{\$ } + \sigma \left( {1 - \frac{{C_{{\text{B}}} + C_{\$ } }}{{C_{{\text{B}}} }}\mu_{B} } \right)x \, \Pi_{{\text{B}}} C_{{\text{B}}} $$
(B-7)

Equation (B-7) can further be reduced:

$$ \alpha \frac{{\mu_{{\text{B}}} - C_{{\text{B}}} }}{{\mu_{{\text{B}}} }} = \sigma x^{2} \left( {1 - \frac{{C_{{\text{B}}} + C_{\$ } }}{{C_{{\text{B}}} }}\mu_{{\text{B}}} } \right)\frac{{\left( {1 - \mu_{{\text{B}}} } \right)C_{{\text{B}}} - \mu_{{\text{B}}} C_{\$ } }}{{\mu_{{\text{B}}} }} + \sigma x\left( {1 - \frac{{C_{{\text{B}}} + C_{\$ } }}{{C_{{\text{B}}} }}\mu_{{\text{B}}} } \right)(\Pi_{\$ } C_{\$ } + \Pi_{{\text{B}}} C_{{\text{B}}} ) $$
(B-8)

Finally, we obtain a quadratic equation for µB:

$$ \sigma x(C_{{{\text{B}} }} + C_{\$ } )\left[ {x(C_{{{\text{B}} }} + C_{\$ } } \right) - (\Pi_{\$ } C_{\$ } + \Pi_{{\text{B}}} C_{{\text{B }}} )]\mu_{{\text{B}}}^{2} + \left\{ {\sigma xC_{{\text{B}}} \left[ {(\Pi_{\$ } C_{\$ } + \Pi_{{\text{B}}} C_{{{\text{B}} }} } \right) - 2x(C_{{\text{B }}} + C_{\$ } )] - \alpha C_{{\text{B}}} } \right\}\mu_{{\text{B}}} + C_{{\text{B}}}^{2} \left( {\sigma x^{2} + \alpha } \right) = 0 $$
(B-9)

Define: \(m = \sigma x(C_{{{\text{B}} }} + C_{\$ } )\left[ {x\left( {C_{{{\text{B}} }} + C_{\$ } } \right) - (\Pi_{\$ } C_{\$ } + \Pi_{{\text{B}}} C_{{{\text{B}} }} )} \right]\)

$$ n = \sigma xC_{{\text{B}}} \left[ {\left( {\Pi_{\$ } C_{\$ } + \Pi_{{\text{B}}} C_{{{\text{B}} }} } \right) - 2x(C_{{{\text{B}} }} + C_{\$ } )} \right] - \alpha C_{{\text{B}}} $$
$$ l = C_{{\text{B}}}^{2} \left( {\sigma x^{2} + \alpha } \right) $$

Equation (B-9) can be rewritten as Eq. (23)

$$ m\mu_{{\text{B}}}^{2} + n\mu_{{\text{B}}} + l = 0 $$
(23)

Proof of Proposition 3

Assume (1) ε1 $ B= ε (2) i$= iB=0, then the four Bellman equations from Eqs. (7, 8, 9, and 10) can be rewritten as below:

$$ r\;V_{0} = \alpha \;(V_{1} - V_{0} ) $$
(B-10)
$$ r\;V_{1} = \sigma \mu_{1} x^{2} (u - \varepsilon + V_{0} - V_{1} ) + \sigma \mu_{\$ } x\mathop {\max }\limits_{{\pi_{\$ } }} \pi_{\$ } (V_{\$ } - V_{1} ) + \sigma \mu_{{\text{B}}} x\mathop {\max }\limits_{{\pi_{{\text{B}}} }} \pi_{{\text{B}}} (V_{{\text{B}}} - V_{1} ) $$
(B-11)
$$ r\;V_{\$ } = \sigma \mu_{1} x \, \Pi_{\$ } (u - \varepsilon + V_{0} - V_{\$ } ) $$
(B-12)
$$ r\;V_{{\text{B}}} = \sigma \mu_{1} x \, \Pi_{{\text{B}}} (u - \varepsilon + V_{0} - V_{{\text{B}}} ) $$
(B-13)

We need to prove that: V1 >V$= VB=0, if π$$BB=0.

First, plug π$$BB=0 into Eqs. (B-10), (B-11), (B-12), and (B-13), we obtain:

$$ r\;V_{0} = \alpha \;(V_{1} - V_{0} ) $$
(B-10)
$$ r\;V_{1} = \sigma \mu_{1} x^{2} (u - \varepsilon + V_{0} - V_{1} ) $$
(B-14)
$$ r\;V_{\$ } = 0 $$
(B-15)
$$ r\;V_{B} = 0 $$
(B-16)

Equations (B-15) and (B-16) directly show that V$= VB=0.

Combining Eqs. (B-10) and (B-14), we can solve for V1 as below:

$$ V_{1} = \frac{{\left( {r + \alpha } \right)\sigma \mu_{1} x^{2} \left( {u - \varepsilon } \right)}}{{r^{2} + \alpha r + \sigma \mu_{1} x^{2} r}} $$
(B-17)

As long as the utility from consuming the consumption goods is higher than the transaction cost, i.e., u-ε >0, we have V1 >0= V$= VB. Thus, our value functions are well consistent with the optimal behaviors of agents defined in Definition 1.

Proof of Proposition 4

Assume (1) ε1 =ε$ =εB= ε (2) i$= iB=0, re-use the four Bellman equations from Eqs. (B-10) (B-11), (B-12), and (B-13) with π$$=1, 0< πB= ΠB<1, and VB =V1, we obtain:

$$ r\;V_{0} = \alpha \;(V_{1} - V_{0} ) $$
(B-10)
$$ r\;V_{1} = \sigma \mu_{1} x^{2} (u - \varepsilon + V_{0} - V_{1} ) + \sigma \mu_{\$ } x(V_{\$ } - V_{1} ) $$
(B-18)
$$ r\;V_{\$ } = \sigma \mu_{1} x(u - \varepsilon + V_{0} - V_{\$ } ) $$
(B-19)
$$ r\;V_{{\text{B}}} = \sigma \mu_{1} x \, \Pi_{{\text{B}}} (u - \varepsilon + V_{0} - V_{{\text{B}}} ) $$
(B-13)

According to Eq. (B-19), we obtain:

$$ V_{\$ } = \frac{{\sigma \mu_{1} x\left( {u - \varepsilon + V_{0} } \right)}}{{r + \sigma \mu_{1} x}} $$
(B-20)

According to Eq. (B-13), we obtain:

$$ V_{{\text{B}}} = \frac{{\sigma \mu_{1} x\Pi_{{\text{B}}} \left( {u - \varepsilon + V_{0} } \right)}}{{r + \sigma \mu_{1} x\Pi_{{\text{B}}} }} $$
(B-21)

Comparing Eq. (20) with (21), we require that: V$ >VB, i.e.,

$$ \frac{{\sigma \mu_{1} x\left( {u - \varepsilon + V_{0} } \right)}}{{r + \sigma \mu_{1} x}} > \frac{{\sigma \mu_{1} x\Pi_{{\text{B}}} \left( {u - \varepsilon + V_{0} } \right)}}{{r + \sigma \mu_{1} x\Pi_{{\text{B}}} }} $$

The above condition can be simplified in the following steps:

$$ \frac{1}{{r + \sigma \mu_{1} x}} > \frac{{\Pi_{{\text{B}}} }}{{r + \sigma \mu_{1} x\Pi_{{\text{B}}} }} $$
$$ r + \sigma \mu_{1} x\Pi_{{\text{B}}} > \Pi_{{\text{B}}} \left( {r + \sigma \mu_{1} x} \right) $$
$$ 1 > \Pi_{{\text{B}}} $$

Thus, if 0< ΠB<1, VB < V$.

Proof of Corollary 1

The existence of a dollar-dominated equilibrium in Proposition 1 also determines the unique value of ΠB. Now we solve for this value as below.

Since VB =V1, substitute V1 for VB in Eq. (B-21), we obtain:

$$ V_{1} = \frac{{\sigma \mu_{1} x\Pi_{{\text{B}}} \left( {u - \varepsilon + V_{0} } \right)}}{{r + \sigma \mu_{1} x\Pi_{{\text{B}}} }} = \frac{{\sigma \mu_{1} x\Pi_{{\text{B}}} }}{{r + \sigma \mu_{1} x\Pi_{{\text{B}}} }}\left( {u - \varepsilon + V_{0} } \right) $$
(B-22)

From Eq. (B-18), we obtain:

$$ \left( {r + \sigma \mu_{1} x^{2} + \sigma \mu_{\$ } x} \right)\;V_{1} = \sigma \mu_{1} x^{2} (u - \varepsilon + V_{0} ) + \sigma \mu_{\$ } x \, V_{\$ } $$
(B-23)

Substituting Eq. (B-20) for V$ in Eq. (B-23), we obtain:

$$ \left( {r + \sigma \mu_{1} x^{2} + \sigma \mu_{\$ } x} \right)\;V_{1} = \sigma \mu_{1} x^{2} (u - \varepsilon + V_{0} ) + \sigma \mu_{\$ } x\frac{{\sigma \mu_{1} x\left( {u - \varepsilon + V_{0} } \right)}}{{r + \sigma \mu_{1} x}} $$
(B-24)

Rearranging Eq. (B-24), we obtain:

$$ V_{1} = \frac{{\sigma \mu_{1} x^{2} \left( {r + \sigma \mu_{1} x + \sigma \mu_{\$ } } \right)}}{{\left( {r + \sigma \mu_{1} x^{2} + \sigma \mu_{\$ } x} \right)\left( {r + \sigma \mu_{1} x} \right)}}\left( {u - \varepsilon + V_{0} } \right) $$
(B-25)

Combining Eq. (B-22) with (B-24), we obtain:

$$\frac{{\sigma \mu_{1} x\Pi_{{\text{B}}} }}{{r + \sigma \mu_{1} x\Pi_{{\text{B}}} }}\left( {u - \varepsilon + V_{0} } \right) = \frac{{\sigma \mu_{1} x^{2} \left( {r + \sigma \mu_{1} x + \sigma \mu_{\$ } } \right)}}{{\left( {r + \sigma \mu_{1} x^{2} + \sigma \mu_{\$ } x} \right)\left( {r + \sigma \mu_{1} x} \right)}}\left( {u - \varepsilon + V_{0} } \right)$$
(B-26)

The coefficients of both sides of Eq. (B-26) are equal, then,

$$ \frac{{\sigma \mu_{1} x\Pi_{{\text{B}}} }}{{r + \sigma \mu_{1} x\Pi_{{\text{B}}} }} = \frac{{\sigma \mu_{1} x^{2} \left( {r + \sigma \mu_{1} x + \sigma \mu_{\$ } } \right)}}{{\left( {r + \sigma \mu_{1} x^{2} + \sigma \mu_{\$ } x} \right)\left( {r + \sigma \mu_{1} x} \right)}} $$
(B-27)

Solving for ΠB from Eq. (B-27), we obtain:

$$ \Pi_{{\text{B}}} = \frac{{x\left( {r + \sigma \mu_{1} x + \sigma \mu_{\$ } } \right)}}{{r + \sigma \mu_{1} x + \sigma \mu_{\$ } x}} $$
(B-28)

Thus, ΠB>0. We still need to prove that: ΠB<1, which requires that:

$$ \frac{{x\left( {r + \sigma \mu_{1} x + \sigma \mu_{\$ } } \right)}}{{r + \sigma \mu_{1} x + \sigma \mu_{\$ } x}} < 1 $$

To solve the above condition, we need x<1. This is true according to the definition of x.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, G.H. Valuation of Cryptocurrency Without Intrinsic Value: A Promise of Future Payment System and Implications to De-dollarization. Eastern Econ J 49, 221–248 (2023). https://doi.org/10.1057/s41302-023-00237-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1057/s41302-023-00237-2

Keywords

JEL Classification

Navigation