Skip to main content
Log in

Sustainable Debt Policy Rules and Growth in a Small Open Economy Model: Is a Balanced Government Budget Worthwhile?

  • Published:
Comparative Economic Studies Aims and scope Submit manuscript

Abstract

In this paper, our objective is to analyze sustainable debt policy rules and economic growth using a model of endogenous economic growth theory. For the government, it is possible to run into debt, but the primary surplus is a positive linear function of the debt-to-GDP ratio which guarantees that public debt is sustainable. We analyze different sustainable debt policies in this small open economy model of endogenous growth with public capital accumulation, as well we take transitions into account. We investigate the characteristics and stability of the steady state, and we analyze the effects on welfare for the different debt policies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. From now on, we omit the time argument t if no ambiguity arises.

  2. If \(\psi\) takes a large (small) value, the government adjusts \(b=\frac{B}{Y}\) at a fast (slow) pace.

  3. The world interest rate exceeds the growth rate of GDP on average.

  4. Foreign assets (FA) is wealth held abroad that generates interest income, if positive. If FA is negative, this leads to interest payments to foreign countries.

  5. The income tax rate is fixed.

References

  • Alogoskoufis, G. 2014. Endogenous growth and external balance in a small open economy. Open Economies Review 25(3): 571–594.

    Article  Google Scholar 

  • Arčabić, V., J. Tica, J. Lee, and R.J. Sonora. 2018. Public debt and economic growth conundrum: Nonlinearity and inter-temporal relationship. Studies in Nonlinear Dynamics & Econometrics 22(1): 145.

    Article  Google Scholar 

  • Barro, R., N.G. Mankiw, and X. Sala-i Martin. 1992. Capital mobility in neoclassical models of growth. National Bureau of Economic Research. https://doi.org/10.3386/w4206.

  • Barro, R.J. (ed.). 1989. Modern business cycle theory. Cambridge, MA: Harvard Univ. Press.

    Google Scholar 

  • Blanchard, O., and S. Fischer. 1989. Lectures on macroeconomics. Cambridge, MA: MIT Press.

    Google Scholar 

  • Bohn, H. 1995. The sustainability of budget deficits in a stochastic economy. Journal of Money, Credit and Banking 27(1): 257.

    Article  Google Scholar 

  • Checherita-Westphal, C., and P. Rother. 2012. The impact of high government debt on economic growth and its channels: An empirical investigation for the euro area. European Economic Review 56(7): 1392–1405.

    Article  Google Scholar 

  • Fincke, B., and A. Greiner. 2015. Public debt and economic growth in emerging market economies. South African Journal of Economics 83(3): 357–370.

    Article  Google Scholar 

  • Futagami, K., T. Iwaisako, and R. Ohdoi. 2008. Debt policy rule, productive government spending, and multiple growth paths. Macroeconomic Dynamics 12(4): 445–462.

    Article  Google Scholar 

  • Futagami, K., Y. Morita, and A. Shibata. 1993. Dynamic analysis of an endogenous growth model with public capital. The Scandinavian Journal of Economics 95(4): 607.

    Article  Google Scholar 

  • Ghosh, S., and I.A. Mourmouras. 2004. Endogenous growth, welfare and budgetary regimes. Journal of Macroeconomics 26(4): 623–635.

    Article  Google Scholar 

  • Greiner, A. 2007. An endogenous growth model with public capital and sustainable government debt. The Japanese Economic Review 58(3): 345–361.

    Article  Google Scholar 

  • Greiner, A. 2012. Public capital, sustainable debt and endogenous growth. Research in Economics 66(3): 230–238.

    Article  Google Scholar 

  • Greiner, A., and B. Fincke. 2015. Public debt, sustainability and economic growth: Theory and empirics. Business, economics. Cham: Springer.

    Book  Google Scholar 

  • Greiner, A., and W. Semmler. 2000. Endogenous growth, government debt and budgetary regimes. Journal of Macroeconomics 22(3): 363–384.

    Article  Google Scholar 

  • Huang, K.X., Q. Meng, and J. Xue. 2017. Balanced-budget income taxes and aggregate stability in a small open economy. Journal of International Economics 105: 90–101.

    Article  Google Scholar 

  • Morimoto, K., T. Hori, N. Maebayashi, and K. Futagami. 2017. Debt policy rules in an open economy. Journal of Public Economic Theory 19(1): 158–177.

    Article  Google Scholar 

  • Panizza, U., and A.F. Presbitero. 2014. Public debt and economic growth: Is there a causal effect? Journal of Macroeconomics 41: 21–41.

    Article  Google Scholar 

  • Reinhart, C.M., and K.S. Rogoff. 2010. Growth in a time of debt. American Economic Review 100(2): 573–578.

    Article  Google Scholar 

  • Romer, P.M. 1986. Increasing returns and long-run growth. Journal of Political Economy 94(5): 1002–1037.

    Article  Google Scholar 

  • Turnovsky, S.J. 1996a. Fiscal policy, adjustment costs, and endogenous growth. Oxford Economic Papers 48(3): 361–381.

    Article  Google Scholar 

  • Turnovsky, S.J. 1996b. Fiscal policy, growth, and macroeconomic performance in a small open economy. Journal of International Economics 40(1–2): 41–66.

    Article  Google Scholar 

  • Turnovsky, S.J. 1997. Fiscal policy in a growing economy with public capital. Macroeconomic Dynamics 1(03): 615–639.

    Article  Google Scholar 

  • Turnovsky, S.J. 2000. Fiscal policy, elastic labor supply, and endogenous growth. Journal of Monetary Economics 45(1): 185–210.

    Article  Google Scholar 

  • van der Ploeg, F. 1996. Budgetary policies, foreign indebtedness, the stock market, and economic growth. Oxford Economic Papers 48(3): 382–396.

    Article  Google Scholar 

  • Yakita, A. 2008. Sustainability of public debt, public capital formation, and endogenous growth in an overlapping generations setting. Journal of Public Economics 92(3–4): 897–914.

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank two anonymous referees for their valuable comments which helped to improve the paper. I am indebted to Alfred Greiner and Christiane Clemens for the inspiring ideas and the support received in various meetings. Further, I would like to thank António Afonso, Matthias Schön, Paolo Pasimeni and other participants for very competent and detailed comments during the INFER Workshop on New Challenges for Fiscal Policy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabienne Lara Dascher.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Reaction coefficient \(\psi\) and its \(b^\star\), \(a^\star\) and \(c^\star\) on the SBGP for the stated parameter setting with \(\sigma =2\) and \(\phi =0.04\)

\(\sigma =2\quad \phi =0.04\)

\(\psi\)

\(b^\star\)

\(a^\star\)

\(c^\star\)

\(\gamma ^\star\)

Stability

\(\psi =0.01\)

1.333

− 10.135

0.237

0.01

Real Eigenvalues (+, +, −)

\(\psi =0.02\)

2.

− 8.357

0.281

0.01

Real Eigenvalues (+, −, +)

\(\psi =0.03\)

4.

− 3.024

0.414

0.01

Real Eigenvalues (+, −, +)

\(\psi =0.035\)

8.

7.643

0.681

0.01

Real Eigenvalues (+, −, +)

\(\psi =0.04\)

Complex

\(2.951 * 10^{16}\)

Complex

0.01

Not solvable

\(\psi =0.041\)

− 40.

− 120,357

− 2519

0.01

Real Eigenvalues (+, −, +)

\(\psi =0.0415\)

− 26.667

− 84.802

− 1.630

0.01

Real Eigenvalues (+, −, +)

\(\psi =0.1\)

− 0.667

− 15.468

0.103

0.01

Real Eigenvalues (+,-,-)

\(\psi =0.2\)

− 0.25

− 14.357

0.131

0.01

Real Eigenvalues (+,-,-)

\(\psi =11\)

− 0.004

− 13.700

0.148

0.01

Real Eigenvalues (−, +, −)

Reaction coefficient \(\psi\) and its \(b^\star\), \(a^\star\) and \(c^\star\) on the SBGP for the stated parameter setting with \(\sigma =0.7\) and \(\phi =-0.04\)

\(\sigma =0.7\quad \phi =-0.04\)

\(\psi\)

\(b^\star\)

\(a^\star\)

\(c^\star\)

\(\gamma ^\star\)

Stability

\(\psi =0.005\)

− 2.435

− 16.595

0.383

0.03

Real Eigenvalues (+, −, +)

\(\psi =0.01\)

− 3.5

− 18.116

0.374

0.03

Real Eigenvalues (+, −, +)

\(\psi =0.02\)

− 28

− 53.116

0.149

0.03

Real Eigenvalues (+, −, +)

\(\psi =0.021\)

− 93.333

− 146.45

− 0.451

0.03

Real Eigenvalues (+, −, −)

\(\psi =0.025\)

11.2

2.884

0.509

0.03

Real Eigenvalues (+, −, −)

\(\psi =0.027\)

7.18

− 2.86

0.472

0.03

Eigenvalues

     

(0.536 + 0i, − 0.012 ± 0.002i)

\(\psi =0.03\)

4.667

− 6.45

0.448

0.03

Eigenvalues

     

(0.535 + 0i, − 0.014 ± 0.007i)

\(\psi =0.04\)

2.154

− 10.04

0.425

0.03

Eigenvalues

     

(0.534 + 0i, − 0.018 ± 0.012i)

\(\psi =0.05\)

1.4

− 11.116

0.419

0.03

Eigenvalues

     

(0.533 + 0i, − 0.022 ± 0.015i)

\(\psi =0.1\)

0.509

− 12.389

0.410

0.03

Eigenvalues

     

(0.526 + 0i, − 0.044 ± 0.005i)

\(\psi =0.2\)

0.224

− 12.796

0.408

0.03

Real Eigenvalues (+, −, −)

\(\psi =0.3\)

0.144

− 12.911

0.407

0.03

Real Eigenvalues (+, −, −)

\(\psi =0.5\)

0.084

− 12.997

0.406

0.03

Real Eigenvalues (+, −, −)

\(\psi =0.9\)

0.046

− 13.051

0.406

0.03

Real Eigenvalues (−, +, −)

Reaction coefficient \(\psi\) and its \(b^\star\), \(a^\star\) and \(c^\star\) on the SBGP for the stated parameter setting with \(\sigma =0.7\) and \(\phi =0.04\)

\(\sigma =0.7\)       \(\phi =0.04\)

\(\psi\)

\(b^\star\)

\(a^\star\)

\(c^\star\)

\(\gamma ^\star\)

Stability

\(\psi =0.01\)

3.5

− 8.116

0.438

0.03

Real Eigenvalues (+, −, +)

\(\psi =0.02\)

28

26.884

0.663

0.03

Real Eigenvalues (+, −, +)

\(\psi =0.03\)

− 4.667

− 19.783

0.363

0.03

Real Eigenvalues (+, −, −)

\(\psi =0.05\)

− 1.4

− 15.116

0.392

0.03

Real Eigenvalues (+, −, −)

\(\psi =0.1\)

− 0.5091

− 13.844

0.401

0.03

Real Eigenvalues (+, −, −)

Different parameter setting: \(r=0.035\), \(\tau =0.2\), \(\rho = 0.02\), \(\alpha =0.3\)

Reaction coefficient \(\psi\) and its \(b^\star\), \(a^\star\) and \(c^\star\) on the SBGP for a different parameter setting with \(\sigma =0.9\) and \(\phi =-0.04\)

\(\sigma =0.9\)       \(\phi =-0.04\)

\(\psi\)

\(b^\star\)

\(a^\star\)

\(c^\star\)

\(\gamma ^\star\)

Stability

\(\psi =0.01\)

− 2.483

− 28.755

0.010

0.009

Real Eigenvalues (+, +, −)

\(\psi =0.02\)

− 6.545

− 43.91

− 0.279

0.009

Eigenvalues

     

(0.461+0i, 0.004 ± 0.007i)

\(\psi =0.03\)

10.286

18.873

0.921

0.009

Eigenvalues

     

(0.459+0i, − 0.0003 ± 0.012i)

\(\psi =0.04\)

2.88

− 8.751

0.393

0.009

Eigenvalues

     

(0.457+0i, − 0.004 ± 0.014i)

\(\psi =0.1\)

0.541

− 17.475

0.226

0.009

Real Eigenvalues (+,-,-)

\(\psi =0.2\)

0.23

− 18.636

0.204

0.009

Real Eigenvalues (+,-,-)

\(\psi =1\)

0.041

− 19.341

0.190

0.009

Real Eigenvalues (−, +, −)

\(\psi =11\)

0.004

− 19.481

0.188

0.009

Real Eigenvalues (−, +, −)

Reaction coefficient \(\psi\) and its \(b^\star\), \(a^\star\) and \(c^\star\) on the SBGP for a different parameter setting with \(\sigma =0.9\) and \(\phi =0.04\)

\(\sigma =0.9\)       \(\phi =0.04\)

\(\psi\)

\(b^\star\)

\(a^\star\)

\(c^\star\)

\(\gamma ^\star\)

Stability

\(\psi =0.01\)

2.483

− 10.233

0.364

0.009

Real Eigenvalues (+, −, +)

\(\psi =0.03\)

− 10.286

− 57.862

− 0.546

0.009

Real Eigenvalues (+, −, +)

\(\psi =0.05\)

− 1.674

− 25.740

0.068

0.009

Real Eigenvalues (+,-,-)

\(\psi =0.07\)

− 0.911

− 22.894

0.122

0.009

Real Eigenvalues (+,-,-)

\(\psi =0.1\)

− 0.541

− 21.514

0.149

0.009

Real Eigenvalues (+,-,-)

\(\psi =0.2\)

− 0.23

− 20.352

0.171

0.009

Real Eigenvalues (+,-,-)

\(\psi =0.5\)

− 0.084

− 19.809

0.181

0.009

Real Eigenvalues (−, +, −)

\(\psi =0.7\)

− 0.059

− 19.716

0.183

0.009

Real Eigenvalues (−, +, −)

\(\psi =1\)

− 0.041

− 19.648

0.185

0.009

Real Eigenvalues (−, +, −)

\(\psi =11\)

− 0.004

− 19.508

0.187

0.009

Real Eigenvalues (−, +, −)

Reaction coefficient \(\psi\) and its \(b^\star\), \(a^\star\) and \(c^\star\) on the SBGP for a different parameter setting with \(\sigma =1.5\) and \(\phi =-0.04\)

\(\sigma =1.5\)       \(\phi =-0.04\)

\(\psi\)

\(b^\star\)

\(a^\star\)

\(c^\star\)

\(\gamma ^\star\)

Stability

\(\psi =0.01\)

− 2.034

− 28.317

− 0.082

0.005

Real Eigenvalues (+, +, +)

\(\psi =0.02\)

− 4.138

− 37.234

− 0.284

0.005

Eigenvalues

     

(0.465 + 0i, 0.007 ± 0.007i)

\(\psi =0.03\)

120

488.875

11.641

0.005

Eigenvalues

     

(0.463 + 0i, 0.003 ± 0.012i)

\(\psi =0.04\)

3.871

− 3.291

0.485

0.005

Eigenvalues

     

(0.461+ 0i, − 0.001 ± 0.014i)

\(\psi =0.05\)

1.967

− 11.359

0.303

0.005

Eigenvalues

     

(0.459 + 0i, − 0.005 ± 0.015i)

\(\psi =0.1\)

0.569

− 17.286

0.168

0.005

Real Eigenvalues (+, −, −)

\(\psi =0.3\)

0.148

− 19.07

0.128

0.005

Real Eigenvalues (+, −, −)

\(\psi =0.5\)

0.085

− 19.336

0.122

0.005

Real Eigenvalues (+, −, −)

\(\psi =1\)

0.041

− 19.522

0.118

0.005

Real Eigenvalues (−, +, −)

\(\psi =11\)

0.004

− 19.681

0.114

0.005

Real Eigenvalues (−, +, −)

Reaction coefficient \(\psi\) and its \(b^\star\), \(a^\star\) and \(c^\star\) on the SBGP for a different parameter setting with \(\sigma =1.5\) and \(\phi =0.04\)

\(\sigma =1.5\)       \(\phi =0.04\)

\(\psi\)

\(b^\star\)

\(a^\star\)

\(c^\star\)

\(\gamma ^\star\)

Stability

\(\psi =0.01\)

2.034

− 11.077

0.309

0.005

Real Eigenvalues (+, +, −)

\(\psi =0.02\)

4.138

− 2.16

0.511

0.005

Real Eigenvalues (+, −, +)

\(\psi =0.04\)

− 3.871

− 36.102

− 0.258

0.005

Real Eigenvalues (+, −, +)

\(\psi =0.1\)

− 0.569

− 22.107

0.059

0.005

Real Eigenvalues (+,-,-)

\(\psi =0.3\)

− 0.148

− 20.324

0.099

0.005

Real Eigenvalues (+,-,-)

\(\psi =0.5\)

− 0.085

− 20.057

0.105

0.005

Real Eigenvalues (−, +, −)

\(\psi =1\)

− 0.041

− 19.871

0.11

0.005

Real Eigenvalues (−, +, −)

\(\psi =11\)

− 0.004

− 19.712

0.113

0.005

Real Eigenvalues (−, +, −)

Welfare in PPD-scenario and welfare resulting from a transition to BGB-scenario for \(\sigma =0.9\)

 

PPD-scenario

From PPD-scenario to BGB-scenario

F

− 10.637

− 39.765

Welfare in BGB-scenario and welfare resulting from a transition to PPD-scenario for \(\sigma =0.9\)

 

BGB-scenario

From BGB-scenario to PPD-scenario

F

− 14.724

107.682

Welfare in PPD-scenario and welfare resulting from a transition to BGB-scenario for \(\sigma =1.5\)

 

PPD-scenario

From PPD-scenario to BGB-scenario

F

− 50.928

− 97.975

Welfare in BGB-scenario and welfare resulting from a transition to PPD-scenario for \(\sigma =1.5\)

 

BGB-scenario

From BGB-scenario to PPD-scenario

F

− 65.242

57.337

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dascher, F.L. Sustainable Debt Policy Rules and Growth in a Small Open Economy Model: Is a Balanced Government Budget Worthwhile?. Comp Econ Stud 62, 373–397 (2020). https://doi.org/10.1057/s41294-020-00130-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1057/s41294-020-00130-3

Keywords

JEL Classification

Navigation