Skip to main content
Log in

Profitability prospects for container roll-on/roll-off shipping on the Northern Sea Route (NSR)

  • Original Article
  • Published:
Maritime Economics & Logistics Aims and scope

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Due to their ability to transport both containerized and wheeled cargo, container roll-on/roll-off (ConRo) ships offer advantages in meeting and integrating the diverse transportation requirements of the Northern Sea Route (NSR). Against this backdrop, we provide an equilibrium diagram for the business prospects of RoRo shipping on the NSR. The paper builds a new mixed integer nonlinear programming (MINLP) model for the NSR single trade ship routing and scheduling problem (NSR-STSRSP), which considers integrated cargo transport and schedule planning. The model is solved within reasonable time by the Gurobi Optimizer through linearization of the MINLP. With the imminent introduction of the 1A super RoRo ship, featuring the world’s most advanced dual-fuel engine, we consider an international transit route along the NSR from China, passing by Japan, South Korea and Russia, before reaching Northwestern Europe. The probability of profit for ConRo shipping on the NSR is assessed through specially designed scenario experiments, where multiple factors are combined, including navigation season, ice class, fuel prices, cargo transport demand, ports and shippers. The results show that while developing a business strategy for ConRo shipping on the NSR, shipping companies must strike a balance between the following factors in the long run: investment costs in ice-class ships; operating costs of such ships; and revenues from contract- and spot cargoes during operations on the NSR. For a niche market such as that of the NSR, a business plan needs to be established on the premise of “on time delivery”, eyeing more long-term agreements for contract cargo shipping. We consider the introduction of ConRo shipping operations on the NSR to hold promising commercial prospects, offering a fresh transportation solution to the trade between Asia and Europe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. The ice class symbol represents a ship's ability to navigate in ice-covered areas. Different ice class ships have varying shipbuilding costs and NSR transit fees, as shown in Tables 8 and 9.

References

Download references

Acknowledgements

The work was supported in part by National Natural Science Foundation of China [grant numbers 72072017, 71902016, 71831002]; Natural Science Foundation of Liaoning Province of China [Grant Numbers 2022-MS-162]. Authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kjetil Fagerholt.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The model linearization method is proposed so that the new model can be solved by the advanced linear programming optimizer Gurobi.

1.1 Discretization of fuel consumption functions

The speed-related formulas are replaced by Andersson et al.’s (2015) discretization method, that is, the voyage time and fuel consumption are described based on linear combinations of discretized speeds.

Let \(\mu_{i}^{{{\text{ICE}}}} = \frac{1}{{v_{i}^{{{\text{ICE}}}} }}\), and \(G_{i}^{{{\text{ICE}}}} \left( {\mu_{i}^{{{\text{ICE}}}} } \right) = \frac{1}{{\left( {u_{i}^{{{\text{ICE}}}} } \right)^{2} }}\). The range of \(\mu_{i}^{{{\text{ICE}}}}\) can be divided into \({\rm K}\) identical segments, as shown in Fig. 

Fig. 12
figure 12

Discretization of fuel consumption functions

12. The greater the value of \({\rm K}\), the more accurate the solution. The upper and lower limits of \(\mu_{i}^{{{\text{ICE}}}}\) can be defined according to the speed range [\(v^{{{\text{ICEMIN}}}}\), \(v^{{{\text{ICEMAX}}}}\)]. In this way, \({\rm K} + 1\) discrete points \(\mu_{i}^{{\text{ICE - 0}}} ,\mu_{i}^{{\text{ICE - 1}}} , \ldots ,\mu_{i}^{{{\text{ICE - }}{\rm K}}}\) can be obtained, along with the corresponding \({\rm K} + 1\) fuel consumptions \(G_{i}^{{{\text{ICE}}}} \left( {\mu_{i}^{{\text{ICE - 0}}} } \right),G_{i}^{{{\text{ICE}}}} \left( {\mu_{i}^{{\text{ICE - 1}}} } \right), \ldots ,G_{i}^{{{\text{ICE}}}} \left( {\mu_{i}^{{{\text{ICE - }}{\rm K}}} } \right)\). Then, a binary variable \(\delta_{i}^{{{\text{ICE - }}\kappa }} ,\kappa = \left\{ {1,2, \ldots ,{\rm K}} \right\}\) is defined to suggest which speed will be used. If and only if the reciprocal \(\mu_{i}^{{{\text{ICE}}}}\) of the speed is used in the leg i, the variable equals 1; otherwise, the variable equals 0.

Similarly, we have \(\mu_{i}^{{{\text{OUT}}}} = \frac{1}{{v_{i}^{{{\text{OUT}}}} }}\). Then, a binary variable \(\delta_{i}^{{{\text{OUT - }}\lambda }} ,\lambda = \left\{ {1,2, \ldots ,\Lambda } \right\}\) is defined to determine the speed in ice-free water of leg i. The following constraints can be introduced:

$$\sum\limits_{\kappa = 0}^{\rm K} {\delta_{i}^{{{\text{ICE - }}\kappa }} } = 1,\quad \forall i \in \left\{ {1,2, \ldots ,P - 1} \right\}$$
(30)
$$\sum\limits_{\lambda = 0}^{\Lambda } {\delta_{i}^{{{\text{OUT - }}\lambda }} } = 1,\quad \forall i \in \left\{ {1,2, \ldots ,P - 1} \right\}$$
(31)

Thus, Eqs. (7) and (23) can be respectively converted to

$$\begin{gathered} C^{{{\text{FUEL}}}} = \sum\limits_{i = 1}^{P - 1} {\sum\limits_{f = 1}^{2} {F_{f} \frac{{sfc_{f} }}{{sfc_{{{\text{HFO}}}} }}} } \left\{ {\sum\limits_{\kappa = 0}^{\rm K} {\left[ {\alpha \rho \sigma_{i} L_{i}^{{{\text{NSR}}}} G_{i}^{{{\text{ICE}}}} \left( {\mu_{i}^{{{\text{ICE - }}\kappa }} } \right)\delta_{i}^{{{\text{ICE - }}\kappa }} } \right]} } \right. \\ \quad \left. { + \sum\limits_{\lambda = 0}^{\Lambda } {\left[ {\rho \left( {1 - \sigma_{i} } \right)L_{i}^{{{\text{NSR}}}} G_{i}^{{{\text{OUT}}}} \left( {\mu_{i}^{{{\text{OUT - }}\lambda }} } \right)\delta_{i}^{{{\text{OUT - }}\lambda }} } \right]} } \right\} \\ \end{gathered}$$
(32)
$$t_{i + 1}^{{{\text{ARI}}}} - t_{i}^{{{\text{DEP}}}} = \sum\limits_{\kappa }^{\rm K} {\sigma_{i} L_{i}^{{{\text{NSR}}}} } \mu_{i}^{{{\text{ICE - }}\kappa }} \delta_{i}^{{{\text{ICE - }}\kappa }} + \sum\limits_{\lambda }^{\Lambda } {\left( {1 - \sigma_{i} } \right)L_{i}^{{{\text{NSR}}}} \mu_{i}^{{{\text{OUT - }}\lambda }} \delta_{i}^{{{\text{OUT - }}\lambda }} } ,\quad \forall i \in \left\{ {1,2, \ldots ,P - 1} \right\}$$
(33)

1.2 Linearization of time window function

The penalty costs \(C_{i}^{{{\text{ARITIME}}}}\) and \(C_{i}^{{{\text{DEPTIME}}}}\) for violating the cargo delivery time window at port i are both piecewise functions. Continuous variables \(w_{i1} ,w_{i2} ,w_{i3} ,w_{i4} \in \left[ {0,1} \right]\) are introduced to Eq. (11). Suppose that:

$$t_{i}^{{{\text{ARI}}}} = T_{i - 1}^{{{\text{LATE}}}} w_{i1} + T_{i}^{{{\text{EARLY}}}} w_{i2} + T_{i}^{{{\text{LATE}}}} w_{i3} + T_{i + 1}^{{{\text{EARLY}}}} w_{i4} ,\quad \forall i \in \left\{ {1,2, \ldots ,P} \right\}$$
(34)

Equation (11) can be rewritten as

$$C_{i}^{{{\text{ARITIME}}}} = S^{{{\text{EARLY}}}} \left( {T_{i}^{{{\text{EARLY}}}} - T_{i - 1}^{{{\text{LATE}}}} } \right)w_{i1} + S^{{{\text{LATE}}}} \left( {T_{i + 1}^{{{\text{EARLY}}}} - T_{i}^{{{\text{LATE}}}} } \right)w_{i4} ,\quad \forall i \in \left\{ {1,2, \ldots ,P} \right\}$$
(35)

where,

$$w_{i1} + w_{i2} + w_{i3} + w_{i4} = 1,\quad \forall i \in \left\{ {1,2, \ldots ,P} \right\}$$
(36)

In addition, binary variables \(z_{i1} ,z_{i2} ,z_{i3} ,z_{i4} \in \left\{ {0,1} \right\}\) are introduced to satisfy:

$$w_{i1} \le z_{i1} ,w_{i2} \le z_{i1} + z_{i2} ,w_{i3} \le z_{i2} + z_{i3} ,w_{i4} \le z_{i4} ,\quad \forall i \in \left\{ {1,2, \ldots ,P} \right\}$$
(37)
$$z_{i1} + z_{i2} + z_{i3} + z_{i4} = 1,\quad \forall i \in \left\{ {1,2, \ldots ,P} \right\}$$
(38)

Equation (12) is treated in a similar manner. By introducing continuous variables \(u_{i1} ,u_{i2} ,u_{i3} ,u_{i4} \in \left[ {0,1} \right]\) and binary variables \(s_{i1} ,s_{i2} ,s_{i3} ,s_{i4} \in \left\{ {0,1} \right\}\), we have:

$$t_{i}^{{{\text{DEP}}}} = T_{i - 1}^{{{\text{LATE}}}} u_{i1} + T_{i}^{{{\text{EARLY}}}} u_{i2} + T_{i}^{{{\text{LATE}}}} u_{i3} + T_{i + 1}^{{{\text{EARLY}}}} u_{i4} ,\forall i \in \left\{ {1,2, \cdots ,P} \right\}$$
(39)
$$C_{i}^{{{\text{DEPTIME}}}} = S^{{{\text{EARLY}}}} \left( {T_{i}^{{{\text{EARLY}}}} - T_{i - 1}^{{{\text{LATE}}}} } \right)u_{i1} + S^{{{\text{LATE}}}} \left( {T_{i + 1}^{{{\text{EARLY}}}} - T_{i}^{{{\text{LATE}}}} } \right)u_{i4} ,\quad \forall i \in \left\{ {1,2, \ldots ,P} \right\}$$
(40)
$$u_{{i1}} + u_{{i2}} + u_{{i3}} + u_{{i4}} = 1,\quad \forall i \in \left\{ {1,2, \ldots ,P} \right\}$$
(41)
$$u_{i1} \le s_{i1} ,u_{i2} \le s_{i1} + s_{i2} ,u_{i3} \le s_{i2} + s_{i3} ,u_{i4} \le s_{i4} ,\quad \forall i \in \left\{ {1,2, \ldots ,P} \right\}$$
(42)
$$s_{i1} + s_{i2} + s_{i3} + s_{i4} = 1,\quad \forall i \in \left\{ {1,2, \ldots ,P} \right\}$$
(43)

1.3 Model transformation

Through the above steps, model [M1] can be transformed into model [M2]:

$$\begin{gathered} \max Z = \sum\limits_{{c = 1}}^{C} {\sum\limits_{{d = 1}}^{D} {\sum\limits_{{i = 1}}^{{P - 1}} {\sum\limits_{{j = 2}}^{P} {\left[ {R_{{ijc}}^{{{\text{MC}}}} M_{{ijc}}^{{\text{C}}} + R_{{ijc}}^{{{\text{OC}}}} \left( {x_{{ijcd}} - M_{{ijc}}^{{\text{C}}} } \right)} \right]} } } } \hfill \\ + \sum\limits_{{b = 1}}^{B} {\sum\limits_{{i = 1}}^{{P - 1}} {\sum\limits_{{j = 2}}^{P} {\left[ {R_{{ijb}}^{{{\text{MB}}}} M_{{ijb}}^{{\text{B}}} + R_{{ijb}}^{{{\text{OB}}}} \left( {y_{{ijb}} - M_{{ijb}}^{{\text{B}}} } \right)} \right]} } } \hfill \\ - \sum\limits_{{i = 1}}^{{P - 1}} {\sum\limits_{{f = 1}}^{2} {F_{f} \frac{{sfc_{f} }}{{sfc_{{{\text{HFO}}}} }}} } \left\{ {\sum\limits_{{\kappa = 0}}^{{\rm K}} {\left[ {\alpha \rho \sigma _{i} L_{i}^{{{\text{NSR}}}} G_{i}^{{{\text{ICE}}}} \left( {\mu _{i}^{{{\text{ICE - }}\kappa }} } \right)\delta _{i}^{{{\text{ICE - }}\kappa }} } \right]} } \right. \hfill \\ \left. { + \sum\limits_{{\lambda = 0}}^{\Lambda } {\left[ {\rho \left( {1 - \sigma _{i} } \right)L_{i}^{{{\text{NSR}}}} G_{i}^{{{\text{OUT}}}} \left( {\mu _{i}^{{{\text{OUT - }}\lambda }} } \right)\delta _{i}^{{{\text{OUT - }}\lambda }} } \right]} } \right\} - \sum\limits_{{i = 1}}^{{P - 1}} {\sum\limits_{{j = 2}}^{P} {\sum\limits_{{c = 1}}^{C} {\sum\limits_{{d = 1}}^{D} {\left( {H_{i}^{{{\text{CLOAD}}}} M_{c} x_{{ijcd}} + H_{j}^{{{\text{CUNLOAD}}}} M_{c} x_{{ijcd}} } \right)} } } } \hfill \\ - \sum\limits_{{i = 1}}^{{P - 1}} {\sum\limits_{{j = 2}}^{P} {\sum\limits_{{b = 1}}^{B} {\left( {H_{i}^{{{\text{BLOAD}}}} y_{{ijb}} + H_{j}^{{{\text{BUNLOAD}}}} y_{{ijb}} } \right)} } } - 0.0158C_{{\varpi \tau }} - \sum\limits_{{i = 1}}^{P} {\left[ {S^{{{\text{EARLY}}}} \left( {T_{i}^{{{\text{EARLY}}}} - T_{{i - 1}}^{{{\text{LATE}}}} } \right)} \right.} w_{{i1}} \hfill \\ \left. { + S^{{{\text{LATE}}}} \left( {T_{{i + 1}}^{{{\text{EARLY}}}} - T_{i}^{{{\text{LATE}}}} } \right)w_{{i4}} + S^{{{\text{EARLY}}}} \left( {T_{i}^{{{\text{EARLY}}}} - T_{{i - 1}}^{{{\text{LATE}}}} } \right)u_{{i1}} + S^{{{\text{LATE}}}} \left( {T_{{i + 1}}^{{{\text{EARLY}}}} - T_{i}^{{{\text{LATE}}}} } \right)u_{{i4}} } \right] \hfill \\ - \frac{{1.3\left( {C^{{{\text{CAPITAL}}}} - C^{{{\text{RESIDUAL}}}} } \right)}}{{365 \times 30}}\frac{{t_{P}^{{{\text{DEP}}}} }}{{24}} \hfill \\ {\text{s}}{\text{.t}}{\text{. }}\left( {14} \right)\sim \left( {22} \right),\left( {24} \right)\sim \left( {25} \right),\left( {28} \right)\sim \left( {31} \right),\left( {33} \right), \hfill \\ {\text{ }}\left( {36} \right)\sim \left( {38} \right),\left( {41} \right)\sim \left( {43} \right), \hfill \\ {\text{ }}w_{{i1}} ,w_{{i2}} ,w_{{i3}} ,w_{{i4}} ,u_{{i1}} ,u_{{i2}} ,u_{{i3}} ,u_{{i4}} \in \left[ {0,1} \right], \hfill \\ {\text{ }}z_{{i1}} ,z_{{i2}} ,z_{{i3}} ,z_{{i4}} ,s_{{i1}} ,s_{{i2}} ,s_{{i3}} ,s_{{i4}} \in \left\{ {0,1} \right\}. \hfill \\ \end{gathered}$$
(M2)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Fagerholt, K., Liu, Y. et al. Profitability prospects for container roll-on/roll-off shipping on the Northern Sea Route (NSR). Marit Econ Logist 25, 778–816 (2023). https://doi.org/10.1057/s41278-023-00266-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1057/s41278-023-00266-w

Keywords

Navigation