Skip to main content
Log in

Estimating sap flow from stem heat balances in Quercus robur L. seedlings in relation to light intensity: A comparison of two methods during the establishment phase

Estimation du flux de sève à partir du bilan thermique de la tige de plants de Quercus robur L. en relation avec l’intensité de la lumière : comparaison de deux méthodes au cours de la phase d’installation

  • Original Article
  • Published:
Annals of Forest Science Aims and scope Submit manuscript

Abstract

  • • Knowledge of whole tree seedling water fluxes is important in ecological and forestry research, especially under conditions with low transpiration, but no standard method has yet been established that provides reliable in situ measurements.

  • • The aims were: (1) to assess the performance of two methods for estimating sap-flows in oak seedlings following planting by correlating the data they provided with natural light intensities over a three-week period, and (2) to compare the estimates with transpiration data obtained by weighing pots.

  • • Estimates of sap flows obtained from data provided by constant power (Dayau-type) heat balance gauges under low light conditions (100–450 μmol m−2 s−1) were less variable than estimates from variable power (EMS-type) heat balance gauges. The EMS-type system yielded data with little between-gauge variation, but consistently underestimated transpiration on a daily basis, a systematic error that should be corrected by other methods. The Dayau-type gauges yielded data with substantial variations, and several gauges are probably needed in research to cover these variations. Further, both systems provide rather uncertain estimates of short-time (hour) transpiration rates.

  • • However, provided that these considerations are taken into account, we conclude that it should be possible to use either system in various research contexts.

Résumé

  • • La connaissance des flux d’eau de l’arbre entier est importante dans la recherche en écologie et en foresterie, en particulier dans des conditions de faible transpiration, mais jusqu’à présent, aucune méthode standard ne procure des mesures fiables in situ.

  • • Les objectifs étaient : (1) d’évaluer la performance de deux méthodes d’estimation des flux de sève en suivant une plantation de semis de chêne et en corrélant les données fournies par ces dernières avec les intensités de lumière naturelle sur une période de trois semaines, et (2) de comparer les estimations de transpiration avec des données obtenues par pesée des pots.

  • • Les estimations de flux de sève obtenues à partir des données fournies par une alimentation constante (Dayau-type) des jauges de bilan thermique sous des conditions de faible luminosité (100–450 μmol m−2 s−1) sont moins variables que les estimations des jauges de bilan thermique à puissance variable (EMS-type). Le système EMS-type a fourni des données avec peu de variation entre les jauges, mais a toujours sous-estimé la transpiration sur une base quotidienne, une erreur systématique qui doit être corrigé par d’autres méthodes. Les jauges de type Dayau ont fourni des données avec des variations importantes, et plusieurs jauges sont probablement nécessaires pour la compréhension de ces variations. En outre, les deux systèmes fournissent des estimations plutôt incertaines des taux de transpiration pour des courtes périodes de temps (heure).

  • • Cependant, à condition que ces considérations soient prises en compte, nous concluons qu’il devrait être possible d’utiliser les deux systèmes, dans divers contextes de recherche.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker J.M. and Van Bavel C.H.M., 1987. Measurement of mass flow of water in the stems of herbaceous plants. Plant Cell Environ. 10: 777–782.

    Google Scholar 

  • Barnes A.D., 2002. Effects of phenology, water availability, and seed source on loblolly pine biomass partitioning and transpiration. Tree Physiol. 22: 733–740.

    PubMed  Google Scholar 

  • Čermák J., Jeník J., Kučera J., and Žídek V., 1984. Xylem water flow in a crack willow tree (Salix fragilis L.) in relation to diurnal changes of environment. Oecologia 64: 145–151.

    Article  Google Scholar 

  • Čermák J., Kučera J., and Nadezhdina N., 2004. Sap flow measurements with some thermodynamic methods, flow integration within trees and scaling up from sample trees to entire forest stands. Trees 18: 529–546.

    Article  Google Scholar 

  • Cienciala E. and Lindroth A., 1995. Gas-exchange and sap flow measurements of Salix viminalis trees in short-rotation forest. Trees 9: 289–294.

    Article  Google Scholar 

  • Coners H. and Leuschner C., 2002. In situ water absorption by tree fine roots measured in real time using miniature sap-flow gauges. Funct. Ecol. 16: 696–703.

    Article  Google Scholar 

  • Coners H. and Leuschner C., 2005. In situ measurement of fine root water absorption in three temperate tree species — Temporal variability and control by soil and atmospheric factors. Basic Appl. Ecol. 6: 395–405.

    Article  Google Scholar 

  • Dayau S., 1993. Réalisation des capteurs pour la mesure du débit de sève dans des arbres (méthode du bilan de chaleur). Cahiers Tech. INRA 31: 3–24.

    Google Scholar 

  • De Wit C.T., 1958. Transpiration and crop yields, Institute of Biological and Chemical Research on Field Crops and Herbage, Wageningen, The Netherlands, Verlagen Landbouwkundige Onderzoekingen 64.6, 1–88.

    Google Scholar 

  • Dugas W.A., Wallace J.S., Allen S.J., and Roberts J.M., 1993. Heat balance, porometer, and deuterium estimates of transpiration from potted trees. Agric. For. Meteorol. 64: 47–62.

    Article  Google Scholar 

  • Gerdes G., Allison B.E., and Pereira L.S., 1994. Overestimation of soybean crop transpiration by sap flow measurements under field conditions in central Portugal. Irrig. Sci. 14: 135–139.

    Article  Google Scholar 

  • Grime V.L., Morison J.I.L., and Simmonds L.P., 1995a. Including the heat storage term in sap flow measurements with the heat balance method. Agric. For. Meteorol. 74: 1–25.

    Article  Google Scholar 

  • Grime V.L., Morison J.I.L., and Simmonds L.P., 1995b. Sap flow measurements from stem heat balances: a comparison of constant with variable power methods. Agric. For. Meteorol. 74: 27–40.

    Article  Google Scholar 

  • Grime V.L. and Sinclair F.L., 1999. Sources of errors in stem heat balance sap flow measurements. Agric. For. Meteorol. 94: 103–121.

    Article  Google Scholar 

  • Groot A. and King K.M., 1992. Measurement of sap flow by the heat balance method: numerical analysis and application to coniferous seedlings. Agric. For. Meteorol. 59: 289–308.

    Article  Google Scholar 

  • Higgs K.H., 1994. Water stress and water use in broadleaved seedlings: Evaluation of sap flow gauges in water relation research. Asp. Appl. Biol. 38: 153–163.

    Google Scholar 

  • IPCC. 2007. Climate change, 2007. Synthesis report, Cambridge University Press, Cambridge.

    Google Scholar 

  • Ishida T., Gaylon S.C., and Calissendorff C., 1991. Improved heat balance method for determining sap flow rate. Agric. For. Meteorol. 56: 35–48.

    Article  Google Scholar 

  • Kjelgaard J.F., Stockle C.O., Black R.A., and Campbell G.S., 1997. Measuring sap flow with the heat balance approach using constant and variable heat inputs. Agric. For. Meteorol. 85: 239–250.

    Article  Google Scholar 

  • Kozlowski T.T. and Davies W.J., 1975. Control of water balance in transplanted trees. J. Arboric. 1: 1–10.

    Google Scholar 

  • Lindroth A., Cermak J., Kucera J., Cienciala E., and Eckersten H., 1995. Sap flow by the heat balance method applied to small size Salix trees in a short-rotation forest. Biomass Bioenergy 8: 7–15.

    Article  Google Scholar 

  • Löf M., 2000. Establishment and growth in seedlings of Fagus sylvatica and Quercus robur: Influence of interference from herbaceous vegetation. Can. J. For. Res. 30: 855–864.

    Google Scholar 

  • Lüttschwager D. and Remus R., 2007. Radial distribution of sap flux density in trunks of a mature beech stand. Ann. For. Sci. 64: 431–438.

    Article  Google Scholar 

  • Ma L., Lu P., Zhao P., Rao X.-Q., Cai X.-A., and Zeng X.-P., 2008. Diurnal, daily, seasonal and annual patterns of sap-flux-scaled transpiration from an Acacia mangium plantation in south China. Ann. For. Sci. 65: 402.

    Article  Google Scholar 

  • Messina M.G. and Duncan J.E., 1993. Irrigation effects on growth and water use of Quercus virginiana (Mill.) on a Texas lignite surfacemined site. Agric. Water Manage. 24: 265–280.

    Article  Google Scholar 

  • Pierret A., Moran C.J., and Doussan C., 2005. Conventional detection methodology is limiting our ability to understand the roles and functions of fine roots. New Phytol. 166: 967–980.

    Article  PubMed  Google Scholar 

  • Sakuratani T., 1981. A heat balance method for measuring water flux in the stem of intact plants. J. Agric. Meteorol. 37: 9–17.

    Article  Google Scholar 

  • Sakuratani T., 1984. Improvement of the probe for measuring water flow rate in intact plants with the stem heat balance method. J. Agric. Meteorol. 40: 273–277.

    Article  Google Scholar 

  • Sands R., Fiscus E.L., and Reid C.P.P., 1982. Hydraulic properties of pine and bean roots with varying degrees of suberization, vascular differentiation and mycorrhizal infection. Aust. J. Plant. Physiol. 9: 559–569.

    Article  Google Scholar 

  • Senock R.S. and Ham J.M., 1995. Measurements of water use by prairie grasses with heat balance flow gauges. J. Range Manage. 48: 150–158.

    Article  Google Scholar 

  • Shackel K.A., Johnson R.S., and Medawar C.K., 1992. Substantial errors in estimates of sap flow using the heat balance technique on woody stems under field conditions. J. Am. Soc. Hortic. Sci. 117: 351–356.

    Google Scholar 

  • Steinberg S.L., Van Bavel C.H.M., and McFarland M.J., 1990. Improved sap flow gauge for woody and herbaceous plants. Agron. J. 82: 851–854.

    Article  Google Scholar 

  • Steppe K., Lemeur R., and Dierick D., 2005. Unravelling the relationship between stem temperature and air temperature to correct for errors in sap-flow calculations using the stem heat balance sensors. Funct. Plant Biol. 32: 599–609.

    Article  Google Scholar 

  • Stone E.C., 1955. Poor survival and the physiological condition of planting stock. For. Sci. 1: 90–94.

    Google Scholar 

  • Valancogne C. and Nasr Z., 1993. A heat balance method for measuring sap flow in small trees. In: Boghetti M., Grace J., and Raschi A. (Eds.), Water transport in plants under climatic stress, Cambridge University Press, Cambridge, pp. 166–173.

    Chapter  Google Scholar 

  • Weibel F.P. and de Vos J.A., 1994. Transpiration measurements on apple trees with an improved stem heat balance method. Plant and Soil 166: 203–219.

    Article  CAS  Google Scholar 

  • Welander N.T. and Ottosson B., 2000. The influence of low light, drought and fertilization on transpiration and growth in young seedlings of Quercus robur L. For. Ecol. Manage. 127: 139–151.

    Article  Google Scholar 

  • Wiltshire J.J.J., Wright C.J., Colls J.J., and Unsworth M.H., 1995. Effects of heat balance stem-flow gauges and associated silicone compound on ash trees. Agric. For. Meteorol. 73: 135–142.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magnus Löf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Löf, M., Welander, N.T. Estimating sap flow from stem heat balances in Quercus robur L. seedlings in relation to light intensity: A comparison of two methods during the establishment phase. Ann. For. Sci. 66, 501 (2009). https://doi.org/10.1051/forest/2009034

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest/2009034

Keywords

Mots-clés

Navigation