Skip to main content
Log in

One-dimensional simulation of co-current, dairy spray drying systems — pros and cons

Simulation monodimensionnelle de systèmes de séchage par atomisation de produits laitiers en co-courant — avantages et inconvénients

  • Review
  • Published:
Dairy Science & Technology

Abstract

One-dimensional (1-D) simulation is a useful technique for the evaluation of dryer operating parameters and product properties before conducting real spray drying trials. The main advantage of a 1-D simulation tool is its ability to perform fast calculations with significant simplicity. Mathematical models can be formulated using heat, mass and momentum balances at the droplet level to estimate time-dependent gas and droplet parameters. One of the purposes of this paper is to summarize key mathematical models that may be used to perform 1-D simulation for spray drying processes, predict essential product-drying gas parameters, assess the accuracy of prediction using pilot-scale spray drying data and perhaps most importantly address the main benefits and limitations of the 1-D simulation technique in relation to industrial spray drying operations. The results of a recent international collaborative study on the development of spray drying process optimization software for skim milk manufacture are presented as an example of the application of 1-D simulation in milk processing.

Résumé

La simulation monodimensionnelle (1-D) est une technique utile pour évaluer les paramètres de séchage et les propriétés des produits avant de conduire les essais de séchage en réel. Le principal avantage de l’outil de simulation 1-D est sa capacité à réaliser des calculs rapidement et avec une grande simplicité. Les modèles mathématiques peuvent être formulés avec les équilibres de chaleur, de masse et de quantité de mouvement à l’échelle de la gouttelette pour estimer les paramètres de vapeur et de gouttelette qui varient au cours du temps. Un des objectifs de cet article est de présenter de façon synthétique les modèles mathématiques clés qui peuvent être utilisés pour réaliser une simulation 1-D, prédire les paramètres de vapeur essentiels pour le séchage du produit, évaluer la précision de la prédiction en utilisant les données du séchage par atomisation obtenues à l’échelle pilote, et enfin d’aborder les principaux bénéfices et limites de la technique de simulation 1-D en relation avec les opérations de séchage par atomisation industrielles. Les résultats d’une récente étude réalisée en collaboration internationale sur le développement d’un logiciel d’optimisation du procédé de séchage par atomisation pour la production de poudre de lait écrémé sont présentés pour illustrer l’application de la simulation 1-D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a w :

water activity (−)

A :

surface area (m2)

A C :

cross-section area of atomizer pipe (channel) (m2)

b :

thickness of liquid jet at the orifice (m)

C :

GAB isotherm model parameter (−)

C 0 :

GAB isotherm model constant (−)

C D :

drag coefficient (−)

C p :

specific heat capacity (J·kg−1·K−1)

d p :

diameter of droplet or particle (m)

D 3/2 :

Sauter mean diameter (m)

D C :

diameter of atomizer pipe (channel) (m)

D e :

effective diameter of drying chamber (m)

D O :

orifice diameter (m)

D v :

air-vapor diffusion coefficient (m2·s−1)

E isi :

kinetic constant from solubility model (J·mol−1)

ΔE v :

apparent activation energy (J·mol−1)

ΔE v,b :

equilibrium activation energy (J·mol−1)

g :

universal gravitational constant (= 9.8 m·s−2)

h :

convective heat-transfer coefficient (W·m−2·K−1)

h m :

mass-transfer coefficient (m·s−1)

H :

enthalpy (J·kg−1)

ΔH 1 :

enthalpy parameter from GAB model (J·kg−1)

ΔH 2 :

enthalpy parameter from GAB model (J·kg−1)

ΔH L :

latent heat of vaporization (J·kg−1)

k :

thermal conductivity (W·m−1·K−1)

K :

GAB isotherm model parameter (−)

K 0 :

GAB isotherm model constant (−)

k g :

constant from the Gordon-Taylor model

k isi :

kinetic constant from solubility model (mL·s−1)

l :

axial distance in dryer (m)

m :

mass (kg)

m o :

monolayer moisture content (kg·kg−1)

m :

mass-flow rate (kg·h−1)

M :

molecular weight (g·mol−1)

Nu :

Nusselt number (−)

P :

pressure (kPa)

Pr :

Prandtl number (−)

r isi :

rate of insoluble material formation (mL·s−1)

R g :

universal gas constant (= 8.314 J·mol−1·K−1)

RH :

relative humidity (%)

Re :

Reynolds number (−)

Sc :

Schmidt number (−)

Sh :

Sherwood number (−)

t :

time (s)

T :

temperature (K)

T g :

glass-transition temperature (K)

T :

room temperature (K)

v :

velocity (m·s−1)

V :

volumetric-flow rate (m3·s−1)

U :

overall heat-transfer coefficient for heat loss (W·m−2K−1)

X :

average droplet moisture content (dry basis) (kg·kg−1)

X 0 :

initial moisture content (dry basis) (kg·kg−1)

X b :

equilibrium moisture content (dry basis) (kg·kg−1)

Y :

air absolute humidity (dry basis) (kg·kg−1)

β :

shrinkage model constant (−)

ω :

weight fraction (−)

θ :

number of droplets/particles (−)

μ :

viscosity (Pa·s)

ρ :

density (kg·m−3)

ρ v :

vapor density (kg·m−3)

b:

bulk drying gas

p:

particle, droplet

s:

solids

sat:

saturated conditions

v:

vapor

w:

water

References

  1. Adhikari B., Howes T., Bhandari B.R., Troung V., Surface stickiness of drops of carbohydrate and organic acid solutions during convective drying: experiments and modeling, Dry. Technol. 21 (2003) 839–873.

    Article  CAS  Google Scholar 

  2. Adhikari B., Howes T., Bhandari B.R., Troung V., Effect of addition of maltodextrin on drying kinetics and stickiness of sugar and acid-rich foods during convective drying: experiments and modelling, J. Food Eng. 62 (2004) 53–68.

    Article  Google Scholar 

  3. Adhikari B., Howes T., Lecomte D., Bhandari B.R., A glass transition temperature approach for the prediction of the surface stickiness of a drying droplet during spray drying, Powder Technol. 149 (2005) 168–179.

    Article  CAS  Google Scholar 

  4. Aguerre R.J., Suarez C., Diffusion of bound water in starchy materials: Application to drying, J. Food Eng. 64 (2004) 389–395.

    Article  Google Scholar 

  5. Alamilla-Beltrán L., Chanona-Pérez J.J., Jiménez-Aparicio A.R., Gutiérrez-López G.F., Description of morphological changes of particles along spray drying, J. Food Eng. 67 (2005) 179–184.

    Article  Google Scholar 

  6. Ben-Yoseph E., Hartel R.W., Howling D., Three-dimensional model of phase transition of thin sucrose films during drying, J. Food Eng. 44 (2000) 13–22.

    Article  Google Scholar 

  7. Bernard C., Broyart B., Vasseur J., Relkin P., Production of whey protein powders with controlled end-use properties, 15th International Drying Symposium, Budapest, Hungary, 2006.

  8. Bhandari B.R., Howes T., Implication of glass transition for the drying and stability of dried foods, J. Food Eng. 40 (1999) 71–79.

    Article  Google Scholar 

  9. Bhandari B.R., Patel K.C., Chen X.D., Spray drying of food materials — process and product characteristics, in: Chen X.D., Mujumdar A.S. (Eds.), Drying Technologies in Food Processing, Blackwell Publishing, West Sussex, UK, 2008, 113–159.

    Google Scholar 

  10. Bimbenet J.J., Schuck P., Roignant M., Brulé G., Méjean S., Heat balance of a multistage spray-dryer: principles and example of application, Lait 82 (2002) 541–551.

    Article  Google Scholar 

  11. Birchal V.S., Huang L., Mujumdar A.S., Passos M.L., Spray dryers: modeling and simulation, Dry. Technol. 24 (2006) 359–371.

    Article  Google Scholar 

  12. Boonyai P., Bhandari B., Howes T., Stickiness measurement techniques for food powders: a review, Powder Technol. 145 (2004) 34–46.

    Article  CAS  Google Scholar 

  13. Boonyai P., Bhandari B., Howes T., Measurement of glass-rubber transition temperature of skim milk powder by static mechanical test, Dry. Technol. 23 (2005) 1499–1514.

    Article  Google Scholar 

  14. Bruce L.J., Okos M.R., Moisture diffusivity in pasta during drying, J. Food Eng. 17 (1992) 117–142.

    Article  Google Scholar 

  15. Chen X.D., Heat-mass transfer and structure formation during drying of single food droplets, Dry. Technol. 22 (2004) 179–190.

    Article  Google Scholar 

  16. Chen X.D., Moisture diffusivity in food and biological materials, Dry. Technol. 25 (2007) 1203–1213.

    Article  Google Scholar 

  17. Chen X.D., Lin S.X.Q., Air drying of milk droplet under constant and time-dependent conditions, AIChE J. 51 (2005) 1790–1799.

    Article  CAS  Google Scholar 

  18. Chen X.D., Patel K.C., Manufacturing better quality food powders from spray drying and subsequent treatments, Dry. Technol. 26 (2008) 1313–1318.

    Article  Google Scholar 

  19. Chen X.D., Pirini W., Ozilgen M., The reaction engineering approach to modelling drying of thin layer of pulped kiwifruit flesh under conditions of small biot numbers, Chem. Eng. Process 40 (2001) 311–320.

    Article  CAS  Google Scholar 

  20. Chen X.D., Xie G.Z., Fingerprints of the drying behaviour of particulate or thin layer food materials established using a reaction engineering model, Food Bioprod. Process 75 (1997) 213–222.

    Article  Google Scholar 

  21. Crowe C.T., Sommerfeld M., Tsuji Y., Fundamentals of Gas-Particle and Gas-Droplet Flows, CRC Press, Boca Raton, USA, 1998.

    Google Scholar 

  22. Dalmaz N., Ozbelge H.O., Eraslan A.N., Uludag Y., Heat and mass transfer mechanisms in drying of a suspension droplet: a new computational model, Dry. Technol. 25 (2007) 391–400.

    Article  CAS  Google Scholar 

  23. Dolinsky A.A., High-temperature spray drying, Dry. Technol. 19 (2001) 785–806.

    Article  CAS  Google Scholar 

  24. Doymaz I., Convective air drying characteristics of thin layer carrots, J. Food Eng. 61 (2004) 359–364.

    Article  Google Scholar 

  25. Efremov G.I., Drying kinetics derived from diffusion equation with flux-type boundary conditions, Dry. Technol. 20 (2002) 55–66.

    Article  Google Scholar 

  26. Efremov G.I., Kudra T., Calculation of the effective diffusion coefficients by applying a quasi-stationary equation for drying kinetics, Dry. Technol. 22 (2004) 2273–2279.

    Article  Google Scholar 

  27. Ferrari G., Meerdink G., Walstra P., Drying kinetics for a single droplet of skim-milk, J. Food Eng. 10 (1989) 215–230.

    Article  Google Scholar 

  28. Fletcher D.F., Guo B., Harvie D.J.E., Langrish T.A.G., Nijdam J.J., Williams J., What is important in the simulation of spray dryer performance and how do current CFD models perform?, Appl. Math. Model. 30 (2006) 1281–1292.

    Article  Google Scholar 

  29. Foster K.D., Bronlund J.E., Paterson A.H.J., Glass transition related cohesion of amorphous sugar powders, J. Food Eng. 77 (2006) 997–1006.

    Article  CAS  Google Scholar 

  30. Gauvin W.H., Katta S., Basic concepts of spray dryer design, AIChE J. 22 (1976) 713–724.

    Article  CAS  Google Scholar 

  31. Gauvin W.H., Katta S., Knelman F.H., Drop trajectory predictions and their importance in the design of spray dryers, Int. J. Multiphas. Flow. 1 (1975) 793–816.

    Article  Google Scholar 

  32. Groenewold C., Moser C., Groenewold H., Tsotsas E., Determination of single-particle drying kinetics in an acoustic levitator, Chem. Eng. J. 86 (2002) 217–222.

    Article  CAS  Google Scholar 

  33. Guo B., Fletcher D.F., Langrish T.A.G., Simulation of the agglomeration in a spray using Lagrangian particle tracking, Appl. Math. Model. 28 (2004) 273–290.

    Article  Google Scholar 

  34. Guo B., Langrish T.A.G., Fletcher D.F., Simulation of gas flow instability in a spray dryer, Chem. Eng. Res. Des. 81 (2003) 631–638.

    Article  CAS  Google Scholar 

  35. Harvie D.J.E., Langrish T.A.G., Fletcher D.F., A computational fluid dynamics study of a tall-form spray dryer, Food Bioprod. Process. 80 (2002) 163–175.

    Article  Google Scholar 

  36. Huang L., Kumar K., Mujumdar A.S., Use of computational fluid dynamics to evaluate alternative spray dryer chamber configurations, Dry. Technol. 21 (2003) 385–412.

    Article  Google Scholar 

  37. Huang L.X., Kumar K., Mujumdar A.S., A comparative study of a spray dryer with rotary disc atomizer and pressure nozzle using computational fluid dynamic simulations, Chem. Eng. Process. 45 (2006) 461–470.

    Article  CAS  Google Scholar 

  38. Huang L.X., Mujumdar A.S., Simulation of an industrial spray dryer and prediction of off-design performance, Dry. Technol. 25 (2007) 703–714.

    Article  CAS  Google Scholar 

  39. Incropera F.P., DeWitt D.P., Fundamentals of Heat and Mass Transfer, 5th edn., John Wiley & Sons, New York, USA, 2002.

    Google Scholar 

  40. Jeantet R., Ducept R., Dolivet A., Méjean S., Schuck P., Residence time distribution: a tool to improve spray-drying control, Dairy Sci. Technol. 88 (2008) 31–43.

    Article  Google Scholar 

  41. Jin Y., Chen X.D., Numerical study of the drying process of different sized particles in an industrial-scale spray dryer, Dry. Technol. 27 (2009) 371–381.

    Article  Google Scholar 

  42. Kastner O., Brenn G., Rensink D., Tropea C., The acoustic tube levitator — a novel device for determining the drying kinetics of single droplets, Chem. Eng. Technol. 24 (2001) 335–339.

    Article  CAS  Google Scholar 

  43. Katekawa M.E., Silva M.A., On the influence of glass transition on shrinkage in convective drying of fruits: a case study of banana drying, Dry. Technol. 25 (2007) 1659–1666.

    Article  Google Scholar 

  44. Ketelaars A.A.J., Pel L., Coumans W.J., Kerkhof P.J.A.M., Drying kinetics: a comparison of diffusion coefficients from moisture concentration profiles and drying curves, Chem. Eng. Sci. 50 (1995) 1187–1191.

    Article  CAS  Google Scholar 

  45. Kieviet F.G., Van Raaij J., De Moor P.P.E.A., Kerkhof P.J.A.M., Measurement and modelling of the air flow pattern in a pilot-plant spray dryer, Chem. Eng. Res. Des. 75 (1997) 321–328.

    Article  CAS  Google Scholar 

  46. Kuts P.S., Strumillo C., Zbicinski I., Evaporation kinetics of single droplets containing dissolved biomass, Dry. Technol. 14 (1996) 2041–2060.

    Article  Google Scholar 

  47. Langrish T.A.G., Multi-scale mathematical modelling of spray dryers, J. Food Eng. 93 (2009) 218–228.

    Article  Google Scholar 

  48. Langrish T.A.G., Kockel T.K., The assessment of a characteristic drying curve for milk powder for use in computational fluid dynamics modelling, Chem. Eng. J. 84 (2001) 69–74.

    Article  CAS  Google Scholar 

  49. Langrish T.A.G., Kota K., A comparison of collision kernels for sprays from one and two-nozzle atomisation systems, Chem. Eng. J. 126 (2007) 131–138.

    Article  CAS  Google Scholar 

  50. Langrish T.A.G., Williams J., Fletcher D.F., Simulation of the effects of inlet swirl on gas flow patterns in a pilot-scale spray dryer, Chem. Eng. Res. Des. 82 (2004) 821–833.

    Article  CAS  Google Scholar 

  51. Leiterer J., Delißen F., Emmerling F., Thünemann A., Panne U., Structure analysis using acoustically levitated droplets, Anal. Bioanal. Chem. 391 (2008) 1221–1228.

    Article  CAS  Google Scholar 

  52. Li Z., Kobayashi N., Determination of moisture diffusivity by thermo-gravimetric analysis under non-isothermal condition, Dry. Technol. 23 (2005) 1331–1342.

    Article  CAS  Google Scholar 

  53. Li X., Zbicinski I., A sensitivity study on CFD modeling of cocurrent spray-drying process, Dry. Technol. 23 (2005) 1681–1691.

    Article  CAS  Google Scholar 

  54. Lin S.X.Q., Chen X.D., Changes in milk droplet diameter during drying under constant drying conditions investigated using the glass-filament method, Food Bioprod. Process. 82 (2004) 213–218.

    Article  Google Scholar 

  55. Lin S.X.Q., Chen X.D., A model for drying of an aqueous lactose droplet using the reaction engineering approach, Dry. Technol. 24 (2006) 1329–1334.

    Article  CAS  Google Scholar 

  56. Lin S.X.Q., Chen X.D., The reaction engineering approach to modelling the cream and whey protein concentrate droplet drying, Chem. Eng. Process. 46 (2007) 437–443.

    Article  CAS  Google Scholar 

  57. Lin S.X.Q., Chen X.D., Pearce D.L., Desorption isotherm of milk powders at elevated temperatures and over a wide range of relative humidity, J. Food Eng. 68 (2005) 257–264.

    Article  Google Scholar 

  58. Madamba P.S., Driscoll R.H., Buckle K.A., The thin-layer drying characteristics of garlic slices, J. Food Eng. 29 (1996) 75–97.

    Article  Google Scholar 

  59. Masters K., Spray Drying Handbook, 5th edn., Longman Scientific & Technical, New York, USA, 1991.

    Google Scholar 

  60. Meerdink G., Drying of Liquid Food Droplets: Enzyme Inactivation and Multicomponent Diffusion, Wageningen Agriculture University, Netherlands, 1993.

    Google Scholar 

  61. Meerdink G., Riet K.V., Prediction of product quality during spray drying, Food Bioprod. Process. 73 (1995) 165–170.

    Google Scholar 

  62. Menting L.C., Hoogstad B., Volatiles retention during the drying of aqueous carbohydrate solutions, J. Food Sci. 32 (1967) 87–90.

    Article  CAS  Google Scholar 

  63. Mezhericher M., Levy A., Borde I., Heat and mass transfer of single droplet/wet particle drying, Chem. Eng. Sci. 63 (2008) 12–23.

    Article  CAS  Google Scholar 

  64. Mezhericher M., Levy A., Borde I., Modeling of droplet drying in spray chambers using 2d and 3d computational fluid dynamics, Dry. Technol. 27 (2009) 359–370.

    Article  CAS  Google Scholar 

  65. Mistry V.V., Pulgar J.B., Physical and storage properties of high milk protein powder, Int. Dairy J. 6 (1996) 195–203.

    Article  CAS  Google Scholar 

  66. Negiz A., Lagergren E.S., Cinar A., Mathematical models of cocurrent spray drying, Ind. Eng. Chem. Res. 34 (1995) 3289–3302.

    Article  CAS  Google Scholar 

  67. Nevers N.D., Physical and Chemical Equilibrium for Chemical Engineers, John Wiley & Sons, New York, USA, 2002.

    Google Scholar 

  68. Oakley D.E., Bahu R.E., Computational modelling of spray dryers, Comp. Chem. Eng. 17 (1993) 493–498.

    Google Scholar 

  69. Ozmen L., Langrish T.A.G., Comparison of glass transition temperature and sticky point temperature for skim milk powder, Dry. Technol. 20 (2002) 1177–1192.

    Article  CAS  Google Scholar 

  70. Parti M., Paláncz B., Mathematical model for spray drying, Chem. Eng. Sci. 29 (1974) 355–362.

    Article  CAS  Google Scholar 

  71. Patel K.C., Production of uniform particles via single stream drying and new applications of the reaction engineering approach, Ph.D. Thesis, Monash University, Australia, 2009.

    Google Scholar 

  72. Patel K.C., Chen X.D., Mathematical Modelling for Plug-Flow Spray Dryer, Chemeca 2004, Sydney, Australia, 2004.

    Google Scholar 

  73. Patel K.C., Chen X.D., Prediction of spray-dried product quality using two simple drying kinetics models, J. Food Process Eng. 28 (2005) 567–594.

    Article  Google Scholar 

  74. Patel K.C., Chen X.D., Sensitivity analysis of the reaction engineering approach to modeling spray drying of whey proteins concentrate, in: Chen G., Mujumdar A.S. (Eds.), The 5th Asia-Pacific Drying Conference, HKUST, Hong Kong, China, 2007, pp. 276–281.

    Chapter  Google Scholar 

  75. Patel K.C., Chen X.D., Drying of aqueous lactose solutions in a single stream dryer, Food Bioprod. Process. 86 (2008) 185–197.

    Article  CAS  Google Scholar 

  76. Patel K.C., Chen X.D., The reaction engineering approach to estimate surface properties of aqueous droplets during convective drying, in: Thorat B., Mujumdar A.S. (Eds.), International Drying Symposium 2008, Hyderabad, India, 2008, pp. 235–241

  77. Patel K.C., Chen X.D., Surface-center temperature differences within milk droplets during convective drying and drying-based biot number analysis, AIChE J. 54 (2008) 3273–3290.

    Article  CAS  Google Scholar 

  78. Patel K.C., Chen X.D., Kar S., The temperature uniformity during air drying of a colloidal liquid droplet, Dry. Technol. 23 (2005) 2337–2367.

    Article  CAS  Google Scholar 

  79. Patel K.C., Chen X.D., Lin S.X.Q., Adhikari B., A composite reaction engineering approach to drying of aqueous droplets containing sucrose, maltodextrin (de6) and their mixtures, AIChE J. 55 (2009) 217–231.

    Article  CAS  Google Scholar 

  80. Písecký J., Handbook of Milk Powder Manufacture, Niro A/S, Copenhagen, Denmark, 1997.

    Google Scholar 

  81. Raghavan G.S.V., Tulasidas T.N., Sablani S.S., Ramaswamy H.S., A method of determination of concentration dependent effective moisture diffusivity, Dry. Technol. 13 (1995) 1477–1488.

    Article  CAS  Google Scholar 

  82. Ratti C., Shrinkage during drying of foodstuffs, J. Food Eng. 23 (1994) 91–105.

    Article  Google Scholar 

  83. Sano Y., Keey R.B., The drying of a spherical particle containing colloidal material into a hollow sphere, Chem. Eng. Sci. 37 (1982) 881–889.

    Article  CAS  Google Scholar 

  84. Schadler N., Kast W., A complete model of the drying curve for porous bodies — Experimental and theoretical studies, Int. J. Heat Mass Transf. 30 (1987) 2031–2044.

    Article  CAS  Google Scholar 

  85. Schiffter H., Lee G., Single-droplet evaporation kinetics, particle formation in an acoustic levitator. Part 1: Evaporation of water microdroplets assessed using boundary-layer and acoustic levitation theories, J. Pharm. Sci. 96 (2007) 2274–2283.

    Article  CAS  Google Scholar 

  86. Schiffter H., Lee G., Single-droplet evaporation kinetics, particle formation in an acoustic levitator. Part 2: Drying kinetics and particle formation from microdroplets of aqueous mannitol, trehalose, or catalase, J. Pharm. Sci. 96 (2007) 2284–2295.

    Article  CAS  Google Scholar 

  87. Schuck P., Dolivet A., Méjean S., Zhu P., Blanchard E., Jeantet R., Drying by desorption: a tool to determine spray drying parameters, J. Food Eng. 94 (2009) 199–204.

    Article  Google Scholar 

  88. Schuck P., Roignant M., Brulé G., Davenel A., Famelart M.H., Maubois J.L., Simulation of water transfer in spray drying, Dry. Technol. 16 (1998) 1371–1393.

    Article  CAS  Google Scholar 

  89. Seydel P., Blomer J., Bertling J., Modeling particle formation at spray drying using population balances, Dry. Technol. 24 (2006) 137–146.

    Article  Google Scholar 

  90. Shrestha A.K., Howes T., Adhikari B.P., Bhandari B.R., Water sorption and glass transition properties of spray dried lactose hydrolysed skim milk powder, LWT — Food Sci. Technol. 40 (2007) 1593–1600.

    Article  CAS  Google Scholar 

  91. Shulyak V.A., Izotova L.A., Shrinkage kinetics during convective drying of selected berries, Dry. Technol. 27 (2009) 495–501.

    Article  Google Scholar 

  92. Sloth J., Kiil S., Jensen A.D., Andersen S.K., Jørgensen K., Schiffter H., Lee G., Model based analysis of the drying of a single solution droplet in an ultrasonic levitator, Chem. Eng. Sci. 61 (2006) 2701–2709.

    Article  CAS  Google Scholar 

  93. Straatsma J., Van Houwelingen G., Steenbergen A.E., De Jong P., Spray drying of food products: 1. Simulation model, J. Food Eng. 42 (1999) 67–72.

    Article  Google Scholar 

  94. Straatsma J., Van Houwelingen G., Steenbergen A.E., De Jong P., Spray drying of food products: 2. Prediction of insolubility index, J. Food Eng. 42 (1999) 73–77.

    Article  Google Scholar 

  95. Strumillo C., Kudra T., Drying: Principles, Applications, and Design, Gordon and Breach Science Publishers, New York, USA, 1986.

    Google Scholar 

  96. Truong V., Bhandari B.R., Howes T., Optimization of co-current spray drying process of sugar-rich foods, Part I. Moisture and glass transition temperature profile during drying, J. Food Eng. 71 (2005) 55–65.

    Article  Google Scholar 

  97. Verdurmen R.E.M., Menn P., Ritzert J., Blei S., Nhumaio G.C.S., Oslash Rensen T.S., Gunsing M., Straatsma J., Verschueren M., Sibeijn M., Schulte G., Fritsching U., Bauckhage K., Tropea C., Sommerfeld M., Watkins A.P., Yule A.J., Schonfeldt H., Simulation of agglomeration in spray drying installations: the edecad project, Dry. Technol. 22 (2004) 1403–1461.

    Article  Google Scholar 

  98. Viollaz P.E., Rovedo C.O., A drying model for three-dimensional shrinking bodies, J. Food Eng. 52 (2002) 149–153.

    Article  Google Scholar 

  99. Walton D.E., The evaporation of water droplets. A single droplet drying experiment, Dry. Technol. 22 (2004) 431–456.

    Article  Google Scholar 

  100. Woo M.W., Daud W.R.W., Mujumdar A.S., Talib M.Z.M., Hua W.Z., Tasirin S.M., Comparative study of droplet drying models for CFD modelling, Chem. Eng. Res. Des. 86 (2008) 1038–1048.

    Article  CAS  Google Scholar 

  101. Woo M.W., Daud W.R.W., Mujumdar A.S., Wu Z., Talib M.Z.M., Tasirin S.M., Non-swirling steady and transient flow simulations in short-form spray dryers, Chem. Prod. Process Model. 4 (2009) 1–32.

    Google Scholar 

  102. Woo M.W., Daud W.R.W., Tasirin S.M., Talib M.Z.M., Effect of wall surface properties at different drying kinetics on the deposition problem in spray drying, Dry. Technol. 26 (2008) 15–26.

    Article  CAS  Google Scholar 

  103. Wulsten E., Lee G., Surface temperature of acoustically levitated water microdroplets measured using infra-red thermography, Chem. Eng. Sci. 63 (2008) 5420–5424.

    Article  CAS  Google Scholar 

  104. Yadollahinia A., Jahangiri M., Shrinkage of potato slice during drying, J. Food Eng. 94 (2009) 52–58.

    Article  Google Scholar 

  105. Yarin A.L., Brenn G., Kastner O., Rensink D., Tropea C., Evaporation of acoustically levitated droplets, J. Fluid Mech. 399 (1999) 151–204.

    Article  CAS  Google Scholar 

  106. Yarin A.L., Brenn G., Kastner O., Tropea C., Drying of acoustically levitated droplets of liquid-solid suspensions: evaporation and crust formation, Phys. Fluid. 14 (2002) 2289–2298.

    Article  CAS  Google Scholar 

  107. Yarin A.L., Brenn G., Rensink D., Evaporation of acoustically levitated droplets of binary liquid mixtures, Int. J. Heat Fluid Flow. 23 (2002) 471–486.

    Article  CAS  Google Scholar 

  108. Yarin A.L., Pfaffenlehner M., Tropea C., On the acoustic levitation of droplets, J. Fluid Mech. 356 (1998) 65–91.

    Article  CAS  Google Scholar 

  109. Zbicinski I., Development and experimental verification of momentum, heat and mass transfer model in spray drying, Chem. Eng. J. 58 (1995) 123–133.

    CAS  Google Scholar 

  110. Zbicinski I., Grabowski S., Strumillo C., Kiraly L., Krzanowski W., Mathematical modelling of spray drying, Comp. Chem. Eng. 12 (1988) 209–214.

    Article  CAS  Google Scholar 

  111. Zbicinski I., Li X., Conditions for accurate CFD modeling of spray-drying process, Dry. Technol. 24 (2006) 1109–1114.

    Article  Google Scholar 

  112. Zbicinski I., Strumillo C., Delag A., Drying kinetics and particle residence time in spray drying, Dry. Technol. 20 (2002) 1751–1768.

    Article  CAS  Google Scholar 

  113. Zogzas N.P., Maroulis Z.B., Effective moisture diffusivity estimation from drying data. A comparison between various methods of analysis, Dry. Technol. 14 (1996) 1543–1573.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Dong Chen.

About this article

Cite this article

Patel, K., Chen, X.D., Jeantet, R. et al. One-dimensional simulation of co-current, dairy spray drying systems — pros and cons. Dairy Sci. Technol. 90, 181–210 (2010). https://doi.org/10.1051/dst/2009059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/dst/2009059

Navigation