Skip to main content
Log in

Food webs in space: On the interplay of dynamic instability and spatial processes

  • Special Issue
  • Published:
Ecological Research

Ecologists increasingly recognize that a consideration of spatial dynamics is essential for resolving many classical problems in community ecology. In the present paper, I argue that understanding how trophic interactions influence population stability can have important implications for the expression of spatial processes. I use two examples to illustrate this point. The first example has to do with spatial determinants of food chain length. Prior theoretical and empirical work has suggested that colonization–extinction dynamics can influence food chain length, at least for specialist consumers. I briefly review evidence and prior theory that food chain length is sensitive to area. A metacommunity scenario, in which each of various patches can have a food chain varying in length (but in which a consumer is not present on a patch unless its required resource is also present), shows that alternative landscape states are possible. This possibility arises if top predators moderate unstable interactions between intermediate predators and basal resources. The second example has to do with the impact of recurrent immigration on the stability of persistent populations. Immigration can either stabilize or destabilize local population dynamics. Moreover, an increase in immigration can decrease average population size for unstable populations with direct density-dependence, or in predator–prey systems with saturating functional responses. These theoretical models suggest that the interplay of temporal variation and spatial fluxes can lead to novel qualitative phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Abrams P. A. (1992) Why don’t predators have positive effects on prey populations? Evolutionary Ecology 6: 449–457.

    Google Scholar 

  • Abrams P. A. & Roth J. D. (1994) The effects of enrichment of 3-species food-chains with nonlinear functional-responses. Ecology 75: 1118–1130.

    Google Scholar 

  • Belyea L. R. & Lancaster J. (1999) Assembly rules within a contingent ecology. Oikos 86: 402–416.

    Google Scholar 

  • Bonsall M. B. & Hassell M. P. (2000) The effects of metapopulation structure on indirect interactions in host-parasitoid assemblages. Proceedings of the Royal Society of London Series B-Biological Sciences 267: 2207–2212.

    Article  Google Scholar 

  • Cohen J. E. & Newman C. M. (1985) A stochastic-theory of community food webs.1. Models and aggregated data. Proceedings of the Royal Society of London Series B-Biological Sciences 224: 421–448.

    Google Scholar 

  • Cohen J. E. & Newman C. M. (1991) Community area and food-chain length – theoretical predictions. American Naturalist 138: 1542–1554.

    Article  Google Scholar 

  • Doebeli M. (1995) Dispersal and dynamics. Theoretical Population Biology 47: 82–106.

    Article  Google Scholar 

  • Ekerholm P., Okansen L. & Okansen T. (2001) Long-term dynamics of voles and lemmings at the timberline and above the willow limit as a test of hypotheses on trophic interactions. Ecography 24: 555–568.

    Article  Google Scholar 

  • Elton C. S. (1927) Animal Ecology. Sidgwick and Jackson, London.

    Google Scholar 

  • Hassell M. P. (2000) The Spatial and Temporal Dynamics of Host–Parasitoid Interactions. Oxford University Press, Oxford.

    Google Scholar 

  • Holt R. D. (1983a) Immigration and the dynamics of peripheral populations. In: Advances in Herpetology and Evolutionary Biology. (eds K. Miyata & A. Rhodin) pp. 680–694. Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts.

    Google Scholar 

  • Holt R. D. (1983b) Models for peripheral populations: The role of immigration. In: Lecture Notes in Biomathematics. (eds H. I. Freedman & C. Strobeck) pp. 25–32. Springer-Verlag, Berlin.

    Google Scholar 

  • Holt R. D. (1992) A neglected facet of island biogeography – the role of internal spatial dynamics in area effects. Theoretical Population Biology 41: 354–371.

    Article  Google Scholar 

  • Holt R. D. (1993) Ecology at the mesoscale: The influence of regional processes on local communities. In: Species Diversity in Ecological Communities. (eds R. Ricklefs & D. Schluter) pp. 77–88. University of Chicago Press, Chicago.

    Google Scholar 

  • Holt R. D. (1996) Food webs in space: an island biogeographic perspective. In: Food Webs: Contemporary Perspectives. (eds G. A. Polis & K. Winemiller) pp. 313–323. Chapman & Hall, New York.

    Google Scholar 

  • Holt R. D. (1997a) Community modules. In: Multitrophic Interactions in Terrestrial Systems. (eds A. C. Gange & V. K. Brown) pp. 333–349. Blackwell Science, Oxford.

    Google Scholar 

  • Holt R. D. (1997b) From metapopulation dynamics to community structure: some consequences of spatial heterogeneity. In: Metapopulation Biology. (eds I. Hanski & M. Gilpin) pp. 149–164. Academic Press, New York.

    Google Scholar 

  • Holt R. D., Lawton J. H., Polis G. A. & Martinez N. D. (1999) Trophic rank and the species-area relationship. Ecology 80: 1495–1504.

    Google Scholar 

  • Holyoak M. (2000) Habitat subdivision causes changes in food web structure. Ecology Letters 3: 509–515.

    Article  Google Scholar 

  • Huxel G. R. & McCann K. (1998) Food web stability: The influence of trophic flows across habitats. American Naturalist 152: 460–469.

    Article  Google Scholar 

  • Jansen V. A. A. (1995) Regulation of predator-prey systems through spatial interactions: a possible solution to the paradox of enrichment. Oikos 74: 384–390.

    Google Scholar 

  • Komonen A., Penttila R., Lindgren M. & Hanski I. (2000) Forest fragmentation truncates a food chain based on an old-growth forest bracket fungus. Oikos 90: 119–126.

    Article  Google Scholar 

  • Law R. & Morton R. D. (1993) Alternative permanent states of ecological communities. Ecology 74: 1347–1361.

    Google Scholar 

  • Lockwood J. L., Powell R. D., Nott M. P. & Pimm S. L. (1997) Assembling ecological communities in time and space. Oikos 80: 549–553.

    Google Scholar 

  • MacArthur R. H. & Wilson E. O. (1967) The Theory of Island Biogeography. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • McCallum H. I. (1992) Effects of immigration on chaotic population-dynamics. Journal of Theoretical Biology 154: 277–284.

    Google Scholar 

  • May R. M. (1973) Time-delay versus stability in population models with 2 and 3 trophic levels. Ecology 54: 315–325.

    Google Scholar 

  • Mikkelson G. M. (1993) How do food webs fall apart? A study of changes in trophic structure during relaxation on habitat fragments. Oikos 67: 539–547.

    Google Scholar 

  • Morton R. D. & Law R. (1997) Regional species pools and the assembly of local ecological communities. Journal of Theoretical Biology 187: 321–331.

    Article  Google Scholar 

  • Nakano S. & Murakami M. (2001) Reciprocal subsidies: Dynamic interdependence between terrestrial and aquatic food webs. Proceedings of the National Academy of Sciences of the United States of America 98: 166–170.

    Article  Google Scholar 

  • Pimm S. L. (1982) Food Webs. Chapman & Hall, London.

    Google Scholar 

  • Pimm S. L. & Lawton J. H. (1977) The number of trophic levels in ecological communities. Nature 275: 542–544.

    Google Scholar 

  • Polis G. A., Anderson W. B. & Holt R. D. (1997) Toward an integration of landscape and food web ecology: The dynamics of spatially subsidized food webs. Annual Review of Ecology and Systematics 28: 289–316.

    Article  Google Scholar 

  • Polis G. A. & Winemiller K., eds. (1996) Food Webs: Integration of Pattern and Process. Chapman & Hall, New York.

    Google Scholar 

  • Post D. M. Broadening the discourse on food-chain length. Trends in Ecology and Evolution (in press).

  • Post D. M., Pace M. L. & Hairston N. G. (2000) Ecosystem size determines food-chain length in lakes. Nature 405: 1047–1049.

    Article  Google Scholar 

  • Power M. E. & Rainey W. E. Food webs and resource sheds: Towards spatially delimiting trophic interactions. In: Ecological Consequences of Habitat Heterogeneity. (ed. Z. Kawabata). Blackwell Science, Oxford. (in press)

  • Ritchie M. E. (1999) Biodiversity and reduced extinction risks in spatially isolated rodent populations. Ecology Letters 2: 11–13.

    Article  Google Scholar 

  • Ritchie M. E. & Olff H. (1999) Spatial scaling laws yield a synthetic theory of biodiversity. Nature 400: 557–560.

    Article  CAS  PubMed  Google Scholar 

  • Roland J. & Taylor P. D. (1997) Insect parasitoid species respond to forest structure at different spatial scales. Nature 386: 710–713.

    Article  Google Scholar 

  • de Roos A. M., McCauley E. & Wilson W. G. (1998) Pattern formation and the spatial scale of interaction between predators and their prey. Theoretical Population Biology 53: 108–130.

    Article  Google Scholar 

  • Rosenzweig M. L. (1973) Exploitation in 3 trophic levels. American Naturalist 107: 275–294.

    Article  Google Scholar 

  • Rosenzweig M. L. (1995) Species Diversity in Space and Time. Cambridge University Press, UK.

    Google Scholar 

  • Rosenzweig M. L. & Macarthur R. H. (1963) Graphical representation and stability conditions of predator–prey interactions. American Naturalist 97: 209–223.

    Article  Google Scholar 

  • Ruxton G. D. & Rohani P. (1998) Population floors and the persistence of chaos in ecological models. Theoretical Population Biology 53: 175–183.

    Article  Google Scholar 

  • Schneider D. W. (1997) Predation and food web structure along a habitat duration gradient. Oecologia 110: 567–575.

    Article  Google Scholar 

  • Schoener T. W. (1989) Food webs from the small to the large. Ecology 70: 1559–1589.

    Google Scholar 

  • Schoener T. W., Spiller D. A. & Morrison L. W. (1995) Variation in the Hymenopteran parasitoid fraction on Bahamian islands. Acta Oecologica-International Journal of Ecology 16: 103–121.

    Google Scholar 

  • Sears A. L. W., Holt R. D. & Polis G. A. Feast and famine in food webs: the effects of pulsed productivity. In: Food Webs at the Landscape Scale: the Ecology of Trophic Flow Across Habitats. (eds G. A. Polis, G. R. Huxel & M. Power). University of Chicago Press, Chicago. (in press).

  • Spencer M. & Warren P. H. (1996) The effects of habitat size and productivity on food web structure in small aquatic microcosms. Oikos 75: 419–430.

    Google Scholar 

  • Steffan-Dewenter I. & Tscharntke T. (2000) Butterfly community structure in fragmented habitats. Ecology Letters 3: 449–456.

    Google Scholar 

  • Sterner R. W., Bajpai A. & Adams T. (1997) The enigma of food chain length: Absence of theoretical evidence for dynamic constraints. Ecology 78: 2258–2262.

    Google Scholar 

  • Stone L. (1993) Period-doubling reversals and chaos in simple ecological models. Nature 365: 617–620.

    Article  Google Scholar 

  • Stone L. & Hart D. (1999) Effects of immigration on the dynamics of simple population models. Theoretical Population Biology 55: 227–234.

    Article  Google Scholar 

  • Tilman D. & Kareiva P., eds. (1997) Spatial Ecology: the Role of Space in Population Dynamics and Interspecific Interactions. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Townsend C. R., Thompson R. M., McIntosh A. R., Kilroy C., Edwards E. & Scarsbrook M. R. (1998) Disturbance, resource supply, and food-web architecture in streams. Ecology Letters 1: 200–209.

    Article  Google Scholar 

  • Van Nouhuys S. & Hanski I. (1999) Host diet affects extinctions and colonizations in a parasitoid metapopulation. Journal of Animal Ecology 68: 1248–1258.

    Article  Google Scholar 

  • Weisser W. W., Jansen V. A. A. & Hassell M. P. (1997) The effects of a pool of dispersers on host-parasitoid systems. Journal of Theoretical Biology 189: 413–425.

    Article  Google Scholar 

  • Whittaker R. J. & Jones S. H. (1994) Structure in re-building insular ecosystems – an empirically derived model. Oikos 69: 524–530.

    Google Scholar 

  • Wilson H. B., Hassell M. P. & Holt R. D. (1998) Persistence and area effects in a stochastic tritrophic model. American Naturalist 151: 587–595.

    Article  Google Scholar 

  • Yodzis P. (1988) The indeterminacy of ecological interactions as perceived through perturbation experiments. Ecology 69: 508–515.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert D. Holt.

About this article

Cite this article

Holt, R. Food webs in space: On the interplay of dynamic instability and spatial processes. Ecol Res 17, 261–273 (2002). https://doi.org/10.1046/j.1440-1703.2002.00485.x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1046/j.1440-1703.2002.00485.x

Key words

Navigation