Skip to main content

Advertisement

Log in

Photophysical studies on lanthanide(iii) chelates conjugated to Pittsburgh compound B as luminescent probes targeted to Aβ amyloid aggregates

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The photophysical properties of Eu3+ and Tb3+ complexes of DOTAGA and DO3A-monoamide conjugates of the Pittsburgh compound B (PiB) chromophore, prepared using linkers of different lengths and flexibilities, and which form stable negatively charged (LnL1), and uncharged (LnL2) complexes, respectively, were studied as potential probes for optical detection of amyloid aggregates. The phenylbenzothiazole (PiB) moiety absorbs light at wavelengths longer than 330 nm with a high molar absorption coefficient in both probes, and acts as an antenna in these systems. The presence of the luminescent Ln3+ ion quenches the excited states of PiB through an energy transfer process from the triplet state of PiB to the metal centre, and structured emission is seen from Eu3+ and Tb3+. The luminescence study indicates the presence of a 5D4 → T1 back transfer process in the Tb3+ complexes. It also provides insights on structural properties of the Eu3+ complexes, such as the high symmetry environment of the Eu3+ ion in a single macrocyclic conformation and the presence of one water molecule in its inner coordination sphere. The overall quantum yield of luminescence of EuL1 is higher than for EuL2. However, their low values reflect the low overall sensitization efficiency of the energy transfer process, which is a consequence of the large distances between the metal center and the antenna, especially in the EuL2 complex. DFT calculations confirmed that the most stable conformation of the Eu3+ complexes involves a combination of a square antiprismatic (SAP) geometry of the chelate and an extended conformation of the linker. The large calculated average distances between the metal center and the antenna point to the predominance of the Förster energy transfer mechanism, especially for EuL2. This study provides insights into the behavior of amyloid-targeted Ln3+ complexes as optical probes, and contributes towards their rational design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. M. B. Graeber, S. Kösel, R. Egensperger, R. B. Banati, U. Müller, K. Bise, P. Hoff, H. J. Möller, K. Fujisawa and P. Mehraein, Rediscovery of the case described by Alois Alzheimer in 1911: Historical, histological and molecular genetic analysis, Neurogenetics 1997 1 73

    Article  CAS  PubMed  Google Scholar 

  2. G. Macchi, C. Brahe and M. Pomponi, Alois Alzheimer and Gaetano Perusini: should man divide what fate united?, Behav. Neurol. 1997 4 210

    Google Scholar 

  3. D. Galimberti and E. Scarpini, Progress in Alzheimer’s Disease, J. Neurol. 2012 259 201

    Article  CAS  PubMed  Google Scholar 

  4. J. A. Hardy and G. A. Higgins, Alzheimer’s disease: the amyloid cascade hypothesis, Science 1992 256 184

    Article  CAS  PubMed  Google Scholar 

  5. R. Roychaudhuri, M. Yang, M. M. Hoshi and D. B. Teplow, Amyloid beta-protein assembly and Alzheimer disease, J. Biol. Chem. 2009 284 4749

    Article  CAS  PubMed  Google Scholar 

  6. J. Hardy and D. J. Selkoe, The Amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics, Science 2002 297 353

    Article  CAS  PubMed  Google Scholar 

  7. K. Rajasekhar, M. Chakrabarti and T. Govindaraju, Function and toxicity of amyloid beta and recent therapeutic interventions targeting amyloid beta in Alzheimer’s disease, Chem. Commun. 2015 51 13434

    Article  CAS  Google Scholar 

  8. R. Sherrington, E. I. Rogaev, Y. Liang, E. A. Rogaeva, G. Levesque, M. Ikeda, H. Chi, C. Lin, G. Li, K. Holman, T. Tsuda, L. Mar, J. F. Foncin, A. C. Bruni, M. P. Montesi, S. Sorbi, I. Rainero, L. Pinessi, L. Nee, I. Chumakov, D. Pollen, A. Brookes, P. Sanseau, R. J. Polinsky, W. Wasco, H. A. R. Da Silva, J. L. Haines, M. A. Perkicak-Vance, R. E. Tanzi, A. D. Roses, P. E. Fraser, J. M. Rommens and P. H. George-Hyslop, Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease, Nature 1995 375 754

    Article  CAS  PubMed  Google Scholar 

  9. E. Levy-Lahad, W. Wasco, P. Poorkaj, D. M. Romano, J. Oshima, W. H. Pettingell, C. Yu, P. D. Jondro, S. D. Schmidt, K. Wang, A. C. Crowley, Y. Fu, S. Y. Guenette, D. Galas, E. Nemens, E. M. Wijsman, T. D. Bird, G. D. Schellenberg and R. E. Tanzi, Candidate gene for the chromosome 1 familial Alzheimer’s disease locus, Science 1995 269 973

    Article  CAS  PubMed  Google Scholar 

  10. B. Dubois, H. H. Feldman, C. Jacova, S. T. Dekosky, P. Barberger-Gateau, J. Cummings, A. Delacourte, D. Galasko, S. Gauthier, G. Jicha, K. Meguro, J. O′brien, F. Pasquier, P. Robert, M. Rossor, S. Salloway, Y. Stern, P. J. Visser and P. Scheltens, Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria, Lancet Neurol. 2007 6 734

    Article  PubMed  Google Scholar 

  11. W. M. Pardridge, The blood-brain barrier: bottleneck in brain drug development, NeuroRx 2005 2 3

    Article  PubMed  PubMed Central  Google Scholar 

  12. C. A. Lipinski, Lead-and drug-like compounds: the rule-of-five revolution, Drug Discovery Today: Technol. 2004 1 337

    Article  CAS  Google Scholar 

  13. D. Balériaux, C. Colosimo, J. Ruscalleda, M. Korves, G. Schneider, K. Bohndorf, G. Bongartz, M. A. Buchem, M. Reiser, K. Sartor, M. W. Bourne, P. M. Parizel, G. R. Cherryman, I. Salerio, L. A. Noce, G. Pirovano, M. A. Kirchin and A. Spinazzi, Magnetic resonance imaging of metastatic disease to the brain with gadobenate dimeglumine, Neuroradiology 2002 44 191

    Article  PubMed  Google Scholar 

  14. A. Petiet and M. Dhenain, Improvement of microscopic MR imaging of amyloid plaques with targeting and non-targeting contrast agents, Curr. Med. Imaging Rev. 2011 7 8

    Article  CAS  Google Scholar 

  15. C. A. Mathis, B. J. Bacskai, S. T. Kajdasz, M. E. McLellan, M. P. Frosch, B. T. Hyman, D. P. Holt, Y. Wang, G.-F. Huang, M. L. Debnath and W. E. Klunk, A lipophilic thioflavin-T derivative for positron emission tomography (PET) imaging of amyloid in brain, Bioorg. Med. Chem. Lett. 2002 12 295

    Article  CAS  PubMed  Google Scholar 

  16. M.-P. Kung, C. Hou, Z.-P. Zhuang, D. Skovronsky and H. F. Kung, Binding of two potential imaging agents targeting amyloid plaques in postmortem brain tissues of patients with Alzheimer’s disease, Brain Res. 2004 1025 98

    Article  CAS  PubMed  Google Scholar 

  17. R. Vandenberghe, K. Van Laere, A. Ivanoiu, E. Salmon, C. Bastin, E. Triau, S. Hasselbalch, I. Law, A. Andersen, A. Korner, L. Minthon, G. Garraux, N. Nelissen, G. Bormans, C. Buckley, R. Owenius, L. Thurfjell, G. Farrar and D. J. Brooks, 18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: A phase 2 trial, Ann. Neurol. 2010 68 319

    Article  PubMed  Google Scholar 

  18. C. M. Clark, J. A. Schneider, B. J. Bedell, T. G. Beach, W. B. Bilker, M. A. Mintun, M. J. Pontecorvo, F. Hefti, A. P. Carpenter, M. L. Flitter, M. J. Krautkramer, H. F. Kung, R. E. Coleman, P. M. Doraiswamy, A. S. Fleisher, M. N. Sabbagh, C. H. Adowsky, E. M. Reiman, S. P. Zehntner and D. M. Skovronsky, Use of florbetapir-PET for imaging β-amyloid pathology, J. Am. Med. Assoc. 2011 305 275

    Article  CAS  Google Scholar 

  19. E. Liu, M. E. Schmidt, R. Margolin, R. Koeppe, N. S. Mason, W. E. Klunk, C. A. Mathis, S. Salloway, N. C. Fox, D. L. Hill, A. S. Les, P. Collins, K. M. Gregg, J. Di, Y. Lu, I. C. Tudor, B. T. Wyman, K. Booth, E. Yuen and H. R. Brashear, Amyloid-β 11C-PiB-PET imaging results from 2 randomized bapineuzumab phase 3 AD trials, Neurology 2015 85 692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. W. E. Klunk and C. A. Mathis, The future of amyloid-beta imaging: a tale of radionuclides and tracer proliferation, Curr. Opin. Neurol. 2008 21 683–687

    Article  PubMed  PubMed Central  Google Scholar 

  21. S. M. Landau, C. Breault, A. D. Joshi, M. Pontecorvo, C. A. Mathis, W. J. Jagust and M. A. Mintun, Amyloid-β imaging with Pittsburgh compound B and florbetapir: comparing radiotracers and quantification methods, J. Nucl. Med. 2013 54 70

    Article  CAS  PubMed  Google Scholar 

  22. H. Watanabe, M. Ono, S. Iikuni, M. Yoshimura, K. Matsumura, H. Kimura and H. Saji, A (68)Ga complex based on benzofuran scaffold for the detection of β-amyloid plaques, Bioorg. Med. Chem. Lett. 2014 24 4834

    Article  CAS  PubMed  Google Scholar 

  23. S. Lacerda, J.-F. Morfin, C. F. G. C. Geraldes and É. Tóth, Metal complexes for multimodal imaging of misfolded protein-related diseases, Dalton Trans. 2017 46 14461

    Article  CAS  PubMed  Google Scholar 

  24. K. Chauhan, A. Datta, A. Adhikari, K. Chuttani, A. K. Singh and A. K. Mishra, 68Ga based probe for Alzheimer’s disease: synthesis and preclinical evaluation of homodimeric chalcone in β-amyloid imaging, Org. Biomol. Chem. 2014 12 7328

    Article  CAS  PubMed  Google Scholar 

  25. M. Asti, E. Ferrari, S. Croci, G. Atti, S. Rubagotti, M. Iori, P. C. Capponi, A. Zerbini, M. Saladini and A. Versari, Synthesis and characterization of 68Ga-labeled curcumin and curcuminoid complexes as potential radiotracers for imaging of cancer and Alzheimer’s disease, Inorg. Chem. 2014 53 4922

    Article  CAS  PubMed  Google Scholar 

  26. D. Cressier, M. Dhilly, T. T. Cao Pham, F. Fillesoye, F. Gourand, A. Maïza, A. F. Martins, J.-F. Morfin, C. F. G. C. Geraldes, É. Tóth and L. Barré, Gallium-68 complexes conjugated to Pittsburgh compound B: radiolabeling and biological evaluation, Mol. Imaging Biol. 2016 18 334

    Article  CAS  PubMed  Google Scholar 

  27. D. J. Hayne, S. Lim and P. S. Donnelly, Metal complexes designed to bind to amyloid-β for the diagnosis and treatment of Alzheimer’s disease, Chem. Soc. Rev. 2014 43 6701

    Article  CAS  PubMed  Google Scholar 

  28. A. Forsberg, H. Engler, O. Almkvist, G. Blomquist, G. Hagman, A. Wall, A. Ringheim, B. Långström and A. Nordberg, PET imaging of amyloid deposition in patients with mild cognitive impairment, Neurobiol. Aging 2008 29 1456

    Article  CAS  PubMed  Google Scholar 

  29. X. Chen, P. Yu, L. Zhang and B. Liu, Synthesis and biological evaluation of 99mTc,Re-monoamine-monoamide conjugated to 2-(4-aminophenyl)benzothiazole as potential probes for β-amyloid plaques in the brain, Bioorg. Med. Chem. Lett. 2008 18 1442

    Article  CAS  PubMed  Google Scholar 

  30. Z.-P. Zhuang, M.-P. Kung, C. Hou, K. Ploessl and H. F. Kung, Biphenyls labeled with technetium 99 m for imaging beta-amyloid plaques in the brain, Nucl. Med. Biol. 2005 32 171

    Article  CAS  PubMed  Google Scholar 

  31. M. Ono, R. Ikeoka, H. Watanabe, H. Kimura, T. Fuchigami, M. Haratake, H. Saji and M. Nakayama, Synthesis and evaluation of novel chalcone derivatives with (99 m)Tc/Re complexes as potential probes for detection of β-amyloid plaques, ACS Chem. Neurosci. 2010 1 598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. J. F. Poduslo, G. L. Curran, J. A. Peterson, D. J. McCormick, A. H. Fauq, M. A. Khan and T. M. Wengenack, Design and chemical synthesis of a Magnetic Resonance contrast agent with enhanced in vitro binding, high blood-brain barrier permeability, and in vivo targeting to Alzheimer’s disease amyloid plaques, Biochemistry 2004 43 6064

    Article  CAS  PubMed  Google Scholar 

  33. Y. Z. Wadghiri, E. M. Sigurdsson, M. Sadowski, J. I. Elliott, Y. Li, H. Scholtzova, C. Y. Tang, G. Aguinaldo, M. Pappolla, K. Duff, T. Wisniewski and D. H. Turnbull, Detection of Alzheimer’s amyloid in transgenic mice using Magnetic Resonance Microimaging, Magn. Reson. Med. 2003 50 293

    Article  CAS  PubMed  Google Scholar 

  34. J. F. Poduslo, T. M. Wengenack, G. L. Curran, T. Wisniewski, E. M. Sigurdsson, S. I. Macura, B. J. Borowski and C. R. Jack, Molecular targeting of Alzheimer’s amyloid plaques for contrast-enhanced Magnetic Resonance Imaging, Neurobiol. Dis. 2002 11 315

    Article  CAS  PubMed  Google Scholar 

  35. J. Yang, Y. Z. Wadghiri, D. M. Hoang, W. Tsui, Y. Sun, E. Chung, Y. Li, A. Wang, M. de Leon and T. Wisniewski, Detection of amyloid plaques targeted by USPIO-Aβ1-42 in Alzheimer’s disease transgenic mice using Magnetic Resonance Microimaging, Neuroimage 2011 55 1600

    Article  PubMed  Google Scholar 

  36. A. F. Martins, J.-F. Morfin, A. Kubíčková, V. Kubíček, F. Buron, F. Suzenet, M. Salerno, A. N. Lazar, C. Duyckaerts, N. Arlicot, D. Guilloteau, C. F. G. C. Geraldes and E. Tóth, PiB-conjugated, metal-based imaging probes: multimodal approaches for the visualization of β-amyloid plaques, ACS Med. Chem. Lett. 2013 4 436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. A. F. Martins, J.-F. Morfin, C. F. G. C. Geraldes and E. Tóth, Gd3+ complexes conjugated to Pittsburgh compound B: potential MRI markers of b-amyloid plaques, J. Biol. Inorg. Chem. 2014 19 281

    Article  CAS  PubMed  Google Scholar 

  38. A. F. Martins, D. M. Dias, J.-F. Morfin, S. Lacerda, D. V. Laurents, É. Tóth and C. F. G. C. Geraldes, Interaction of PiB-derivative metal complexes with beta-amyloid peptides: selective recognition of the aggregated forms, Chem. - Eur. J. 2015 21 5413

    Article  CAS  PubMed  Google Scholar 

  39. G. Bort, S. Catoen, H. Borderies, A. Kebsi, S. Ballet, G. Louin, M. Port and C. Ferroud, Gadolinium-based contrast agents targeted to amyloid aggregates for the early diagnosis of Alzheimer’s disease by MRI, Eur. J. Med. Chem. 2014 87 843

    Article  CAS  PubMed  Google Scholar 

  40. W. E. Klunk, M. L. Debnath and J. W. Pettegrew, Chrysamine-G binding to Alzheimer and control brain: Autopsy study of a new amyloid probe, Neurobiol. Aging 1995 16 541

    Article  CAS  PubMed  Google Scholar 

  41. C. Zhu, L. Liu, Q. Yang, F. Lv and S. Wang, Water-soluble conjugated polymers for imaging, diagnosis, and therapy, Chem. Rev. 2012 112 4687

    Article  CAS  PubMed  Google Scholar 

  42. C. J. Sigurdson, K. P. R. Nilsson, S. Hornemann, G. Manco, M. Polymenidou, P. Schwarz, M. Leclerc, P. Hammarstro, K. Wüthrich and A. Aguzzi, Prion strain discrimination using luminescent conjugated polymers, Nat. Methods 2007 4 1023

    Article  CAS  PubMed  Google Scholar 

  43. E. E. Nesterov, J. Skoch, B. T. Hyman, W. E. Klunk, B. J. Bacskai and T. M. Swager, In vivo optical imaging of amyloid aggregates in brain: design of fluorescent markers, Angew. Chem., Int. Ed. 2005 44 5452

    Article  CAS  Google Scholar 

  44. A. Åslund, C. J. Sigurdson, T. Klingstedt, S. Grathwohl, T. Bolmont, D. L. Dickstein, E. Glimsdal, S. Prokop, M. Lindgren, P. Konradsson, D. M. Holtzman, P. R. Hof, F. L. Heppner, S. Gandy, M. Jucker, A. Aguzzi, P. Hammarstro and K. P. R. Nilsson, Novel pentameric thiophene derivatives for in vitro and in vivo optical imaging of a plethora of protein aggregates in cerebral amyloidoses, ACS Chem. Biol. 2009 4 673

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. L. Civitelli, L. Sandin, E. Nelson, S. I. Khattak, A.-C. Brorsson and K. Kågedal, The luminescent oligothiophene p-FTAA converts toxic Aβ1-42 species into nontoxic amyloid fibers with altered properties, J. Biol. Chem. 2016 291 9233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. N. P. Cook, V. Torres, D. Jain and A. A. Martí, Sensing amyloid-β aggregation using luminescent dipyridophenazine ruthenium(II) complexes, J. Am. Chem. Soc. 2011 133 11121

    Article  CAS  PubMed  Google Scholar 

  47. J.-C. G. Bünzli and S. V. Eliseeva, Intriguing aspects of lanthanide luminescence, Chem. Sci. 2013 4 1939

    Article  CAS  Google Scholar 

  48. J.-C. G. Bünzli, Lanthanide luminescence for biomedical analyses and imaging, Chem. Rev. 2010 110 2729

    Article  PubMed  CAS  Google Scholar 

  49. D. Parker, Luminescent lanthanide sensors for pH, pO2 and selected anions, Coord. Chem. Rev. 2000 205 109

    Article  CAS  Google Scholar 

  50. H. Uh and S. Petoud, Novel antennae for the sensitization of near infrared luminescent lanthanide cations, C. R. Chim. 2010 13 668

    Article  CAS  Google Scholar 

  51. S. Faulkner, S. J. A. Pope, B. P. Burton-Pye, Lanthanide complexes for luminescence imaging applications, Appl. Spectrosc. Rev. 2005 40 1

    Article  CAS  Google Scholar 

  52. A. M. Smith, M. C. Mancini and S. Nie, Bioimaging: Second window for in vivo imaging, Nat. Nanotechnol. 2009 4 710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. I. Hemmilä and V. Laitala, Progress in lanthanides as luminescent probes, J. Fluoresc. 2005 15 529

    Article  PubMed  CAS  Google Scholar 

  54. A. F. Martins, A. C. Oliveira, J.-F. Morfin, D. V. Laurents, É. Tóth and C. F. G. C. Geraldes, Associating a negatively charged GdDOTA-derivative to the Pittsburgh compound B for targeting Aβ amyloid aggregates, J. Biol. Inorg. Chem. 2016 21 83

    Article  CAS  PubMed  Google Scholar 

  55. P. M. Costa, J. T.-W. Wang, J. F. Morfin, T. Khanum, W. To, J. Sosabowski, É. Tóth and K. T. Al-Jamal, Functionalised carbon nanotubes enhance brain delivery of amyloid-targeting Pittsburgh compound B (PiB)-derived ligands, Nanotheranostics 2018 2 168

    Article  PubMed  PubMed Central  Google Scholar 

  56. A. D. Sherry, R. D. Brown III, C. F. G. C. Geraldes, S. H. Koenig, K.-T. Kuan and M. Spiller, Synthesis and characterization of the gadolinium(3+) complex of DOTA-propylamide: a model DOTA-protein conjugate, Inorg. Chem. 1989 620 1989

    Google Scholar 

  57. J. P. André, E. Brücher, R. Kiraly, R. A. Carvalho, H. Mäcke and C. F. G. C. Geraldes, DOTASA, an asymmetrical derivative of DOTA substituted at one acetate pendant arm: 1H NMR and potentiometric studies of the ligand and its lanthanide(III) complexes, Helv. Chim. Acta 2005 88 633

    Article  Google Scholar 

  58. E. Brücher, G. Tircsó, Z. Baranyai, Z. Kovács and A. D. Sherry, in The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging, ed. A. Merbach, L. Helm and É. Tóth, Wiley, Chichester, U.K., 2013, ch. 4, p. 157

  59. A. Barge, G. Cravotto, E. Gianolio and F. Fedeli, How to determine free Gd and free ligand in solution of Gd chelates. A technical note, Contrast Media Mol. Imaging 2006 1 184

    Article  PubMed  Google Scholar 

  60. D. F. Evans, The determination of the paramagnetic susceptibility of substances in solution by nuclear magnetic resonance, J. Chem. Soc. 1959 2003

    Google Scholar 

  61. D. M. Corsi, C. Platas-Iglesias, H. Van Bekkum and J. A. Peters, Determination of paramagnetic lanthanide(III) concentrations from bulk magnetic susceptibility shifts in NMR spectra, Magn. Reson. Chem. 2001 39 723

    Article  CAS  Google Scholar 

  62. J. N. Demas and G. A. Crosby, The measurement of photoluminescence quantum yields. A review, J. Phys. Chem. 1971 75 991

    Article  Google Scholar 

  63. W. H. Melhuish, Quantum efficiencies of fluorescence of organic substances: effect of solvent and concentration of the fluorescent solute, J. Phys. Chem. 1961 65 229

    Article  CAS  Google Scholar 

  64. K. Nakamaru, Synthesis, luminescence quantum yields, and lifetimes of trischelated ruthenium(II) mixed-ligand complexes including 3,3′-dimethyl-2,2′-bipyridyl, Bull, Chem. Soc. Jpn. 1982 55 2697

    Article  CAS  Google Scholar 

  65. J. S. de Melo, J. Pina, F. B. Dias and A. L. Maçanita, in Applied Photochemistry, ed. R. C. Evans, P. Douglas and H. D. Burrows, Springer, 2013, ch. 15, p. 533

  66. J. Pina, J. S. de Melo, H. D. Burrows, A. L. Maçanita, F. Galbrecht, T. Bünnagel and U. Scherf, Alternating binaphthyl-thiophene copolymers: synthesis, spectroscopy, and photophysics and their relevance to the question of energy migration versus conformational relaxation, Macromolecules 2009 42 1710

    Article  CAS  Google Scholar 

  67. J. Tao, J. P. Perdew, V. N. Staroverov and G. E. Scuseria, Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids, Phys. Rev. Lett. 2003 91 146401

    Article  PubMed  CAS  Google Scholar 

  68. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis and J. A. Montgomery, General atomic and molecular electronic structure system, J. Comput. Chem. 1993 14 1347

    Article  CAS  Google Scholar 

  69. M. Dolg, H. Stoll, A. Savin and H. Preuss, Energy-adjusted pseudopotentials for the rare earth elements, Theor. Chim. Acta 1989 75 173

    Article  CAS  Google Scholar 

  70. M. Dolg, H. Stoll and H. Preuss, A combination of quasi-relativistic pseudopotential and ligand field calculations for lanthanoid compounds, Theor. Chim. Acta 1993 85 441

    Article  CAS  Google Scholar 

  71. A. F. Martins, S. V. Eliseeva, H. F. Carvalho, J. M. C. Teixeira, C. T. B. Paula, P. Hermann, C. Platas-Iglesias, S. Petoud, E. Tóth and C. F. G. C. Geraldes, A bis(pyridine N -oxide) analogue of DOTA: relaxometric properties of the GdIII complex and efficient sensitization of visible and NIR-emitting lanthanide(III) cations including PrIII and HoIII, Chem. - Eur. J. 2014 20 14834

    Article  CAS  PubMed  Google Scholar 

  72. F. Lu, R. Hu, S. Wang, X. Guo and G. Yang, Luminescent properties of benzothiazole derivatives and their application in white light emission, RSC Adv. 2017 7 4196

    Article  CAS  Google Scholar 

  73. V. Jacques and J. F. Desreux, Quantitative two-dimensional EXSY spectroscopy and dynamic behavior of a paramagnetic lanthanide macrocyclic chelate: YbDOTA (DOTA = 1,4,7,10-Tetraazacyclododecane-N,N′,N′′,N′′′-tetraacetic Acid), Inorg. Chem. 1994 33 4048

    Article  CAS  Google Scholar 

  74. J. C. P. Grancho, M. M. Pereira, M. da G. Miguel, A. M. Rocha Gonsalves and H. D. Burrows, Synthesis, spectra and photophysics of some free base tetrafluoroalkyl and tetrafluoroaryl porphyrins with potential applications in imaging, Photochem. Photobiol. 2002 75 249

    Article  CAS  PubMed  Google Scholar 

  75. P. A. Tanner, Some misconceptions concerning the electronic spectra of tri-positive europium and cerium, Chem. Soc. Rev. 2013 42 5090

    Article  CAS  PubMed  Google Scholar 

  76. K. Binnemans, Interpretation of europium(III) spectra, Coord. Chem. Rev. 2015 295 1

    Article  CAS  Google Scholar 

  77. S. Aime, M. Botta, M. Fasano, M. P. M. Marques, C. F. G. C. Geraldes, D. Pubanz and A. E. Merbach, Conformational and coordination equilibria on DOTA complexes of lanthanide metal ions in aqueous solution studied by (1)H-NMR Spectroscopy, Inorg. Chem. 1997 36 2059

    Article  CAS  PubMed  Google Scholar 

  78. J. A. Peters, K. Djanashvili, C. F. G. C. Geraldes and C. Platas-Iglesias, in The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging, ed. A. Merbach, L. Helm and É. Tóth, Wiley, 2nd edn, 2013, p. 209

  79. M. Latva, H. Takalo, V.-M. Mukkala, C. Matachescu, J. C. Rodriguez-Ubis and J. Kankare, Correlation between the lowest triplet state energy level of the ligand and lanthanide(III) luminescence quantum yield, J. Lumin. 1997 75 149

    Article  CAS  Google Scholar 

  80. M. Momtaldi, A. Credi, L. Prodi and M. T. Gandolfini, Handbook of Photochemistry, Taylor & Francis, N. Y., 2006

    Google Scholar 

  81. O. L. Malta, Mechanisms of non-radiative energy transfer involving lanthanide ions revisited, J. Non-Cryst. Solids 2008 354 4770

    Article  CAS  Google Scholar 

  82. G. F. de Sá, O. L. Malta, C. de Mello Donegá, A. M. Simas, R. L. Longo, P. A. Santa-Cruz and E. F. da Silva Jr., Spectroscopic properties and design of highly luminescent lanthanide coordination complexes, Coord. Chem. Rev. 2000 196 165

    Article  Google Scholar 

  83. A. N. C. Neto, E. E. S. Teotónio, G. F. de Sá, H. F. Brito, J. Legendziewicz, L. D. Carlos, M. C. F. C. Felinto, P. Gawryszewska, R. T. Moura Jr., R. L. Longo, W. M. Faustino and O. L. Malta, in Handbook on the Physics and Chemistry of Rare Earths, ed. J.-C. G. Bünzli and V. K. Pecharsky, Elsevier B.V., Amsterdam, The Netherlands, 2019, vol. 56, p. 55

    Article  CAS  Google Scholar 

  84. S. Hassoon, H. Lustig, M. B. Rubin and S. Speiser, The mechanism of short-range intramolecular electronic energy transfer in bichromophoric molecules, J. Phys. Chem. 1984 88 6367

    Article  CAS  Google Scholar 

  85. S. V. Eliseeva and J.-C. G. Bünzli, Lanthanide luminescence for functional materials and bio-sciences, Chem. Soc. Rev. 2010 39 189

    Article  CAS  PubMed  Google Scholar 

  86. J.-C. G. Bünzli, Lanthanide light for biology and medical diagnosis, J. Lumin. 2016 170 866

    Article  CAS  Google Scholar 

  87. M. H. V. Werts, R. T. F. Jukes and J. W. Verhoeven, The emission spectrum and the radiative lifetime of Eu3+ in luminescent lanthanide complexes, Phys. Chem. Chem. Phys. 2002 4 1542

    Article  CAS  Google Scholar 

  88. A. Beeby, L. M. Bushby, D. Maffeo and G. J. A. Williams, Intramolecular sensitisation of lanthanide(III) luminescence by acetophenone-containing ligands: the critical effect of para-substituents and solvent, J. Chem. Soc., Dalton Trans. 2002 48

    Google Scholar 

  89. S. Quici, M. Cavazzini, G. Marzanni, G. Accorsi, N. Armaroli, B. Ventura and F. Barigelletti, Visible and Near-Infrared Intense Luminescence from Water-Soluble Lanthanide [Tb(III), Eu(III), Sm(III), Dy(III), Pr(III), Ho(III), Yb(III), Nd(III), Er(III)] Complexes, Inorg. Chem. 2005 44 529

    Article  CAS  PubMed  Google Scholar 

  90. W. D. Horrocks and D. R. Sudnick, Lanthanide ion luminescence probes of the structure of biological macromolecules, Acc. Chem. Res. 1981 14 384

    Article  CAS  Google Scholar 

  91. A. Beeby, I. M. Clarkson, R. S. Dickins, S. Faulkner, D. Parker, L. Royle, A. S. de Sousa, J. A. G. Williams and M. Woods, Non-radiative deactivation of the excited states of europium, terbium and ytterbium complexes by proximate energy-matched OH, NH and CH oscillators: an improved luminescence method for establishing solution hydration states, J. Chem. Soc., Perkin Trans. 2 1999 493

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carlos F. G. C. Geraldes or Hugh D. Burrows.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, A.C., Costa, T., Justino, L.L.G. et al. Photophysical studies on lanthanide(iii) chelates conjugated to Pittsburgh compound B as luminescent probes targeted to Aβ amyloid aggregates. Photochem Photobiol Sci 19, 1522–1537 (2020). https://doi.org/10.1039/d0pp00214c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/d0pp00214c

Navigation