Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Photochemical & Photobiological Sciences
  3. Article
Revisiting cyanobacterial state transitions
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Spectrally decomposed dark-to-light transitions in Synechocystis sp. PCC 6803

29 March 2018

Alonso M. Acuña, Pascal van Alphen, … Ivo H. M. van Stokkum

State 1 and State 2 in Photosynthetic Apparatus of Red Microalgae and Cyanobacteria

03 September 2021

Yulia V. Bolychevtseva, Ivan V. Tropin & Igor N. Stadnichuk

Plastoquinone pool redox state and control of state transitions in Chlamydomonas reinhardtii in darkness and under illumination

25 October 2022

Olli Virtanen & Esa Tyystjärvi

Site, trigger, quenching mechanism and recovery of non-photochemical quenching in cyanobacteria: recent updates

24 March 2018

Ravi R. Sonani, Alastair Gardiner, … Datta Madamwar

Adaptation of light-harvesting functions of unicellular green algae to different light qualities

28 May 2018

Yoshifumi Ueno, Shimpei Aikawa, … Seiji Akimoto

Current state of the primary charge separation mechanism in photosystem I of cyanobacteria

15 August 2022

Dmitry A. Cherepanov, Alexey Yu Semenov, … Victor A. Nadtochenko

Fluorescence recovery protein: a powerful yet underexplored regulator of photoprotection in cyanobacteria†

01 June 2020

Yury B. Slonimskiy, Eugene G. Maksimov & Nikolai N. Sluchanko

Photoprotection mechanisms under different CO2 regimes during photosynthesis in a green alga Chlorella variabilis

07 May 2020

Yoshifumi Ueno, Ginga Shimakawa, … Seiji Akimoto

Regulation of light energy conversion between linear and cyclic electron flow within photosystem II controlled by the plastoquinone/quinol redox poise

27 November 2022

Colin Gates, Gennady Ananyev, … G. Charles Dismukes

Download PDF
  • Perspective
  • Open Access
  • Published: 27 October 2020

Revisiting cyanobacterial state transitions

  • Pablo I. Calzadilla1 &
  • Diana Kirilovsky1 

Photochemical & Photobiological Sciences volume 19, pages 585–603 (2020)Cite this article

  • 90 Accesses

  • 34 Citations

  • 18 Altmetric

  • Metrics details

Abstract

Photosynthetic organisms are exposed to a fluctuating environment in which light intensity and quality change continuously. Specific illumination of either photosystem (PSI or PSII) creates an energy imbalance, leading to the reduction or oxidation of the intersystem electron transport chain. This redox imbalance could trigger the formation of dangerous reactive oxygen species. Cyanobacteria, like plants and algae, have developed a mechanism to re-balance this preferential excitation of either reaction center, called state transitions. State transitions are triggered by changes in the redox state of the membrane-soluble plastoquinone (PQ) pool. In plants and green algae, these changes in redox potential are sensed by Cytochrome b6f, which interacts with a specific kinase that triggers the movement of the main PSII antenna (the light-harvesting complex II). By contrast, although cyanobacterial state transitions have been studied extensively, there is still no agreement about the molecular mechanism, the PQ redox state sensor and the signaling pathways involved. In this review, we aimed to critically evaluate the results published on cyanobacterial state transitions, and discuss the “new” and “old” models in the subject. The phycobilisome and membrane contributions to this physiological process were addressed and the current hypotheses regarding its signaling transduction pathway were discussed.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. N. Sluchanko, Y. Slonimskiy and E. Maksimov, Biochemistry, 2017, 82, 1592–1614.

    CAS  PubMed  Google Scholar 

  2. D. Kirilovsky and C. A. Kerfeld, Nat. Plants, 2016, 2, 16180.

    Article  CAS  PubMed  Google Scholar 

  3. D. Kirilovsky, Photosynth. Res., 2007, 93, 7.

    Article  CAS  PubMed  Google Scholar 

  4. D. Kirilovsky and C. A. Kerfeld, Biochim. Biophys. Acta, Bioenerg., 2012, 1817, 158–166.

    Article  CAS  Google Scholar 

  5. C. A. Kerfeld, M. R. Melnicki, M. Sutter and M. A. Dominguez-Martin, New Phytol., 2017, 215, 937–951.

    Article  CAS  PubMed  Google Scholar 

  6. J. Van Thor, C. Mullineaux, H. Matthijs and K. Hellingwerf, Bot. Acta, 1998, 111, 430–443.

    Article  Google Scholar 

  7. C. W. Mullineaux and D. Emlyn-Jones, J. Exp. Bot., 2004, 56, 389–393.

    Article  PubMed  Google Scholar 

  8. D. Kirilovsky, Photosynth. Res., 2015, 126, 3–17.

    Article  CAS  PubMed  Google Scholar 

  9. A. Wilson, G. Ajlani, J.-M. Verbavatz, I. Vass, C. A. Kerfeld and D. Kirilovsky, Plant Cell, 2006, 18, 992–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. M. G. Rakhimberdieva, I. V. Elanskaya, W. F. Vermaas and N. V. Karapetyan, Biochim. Biophys. Acta, Bioenerg., 2010, 1797, 241–249.

    Article  CAS  Google Scholar 

  11. N. Murata, Biochim. Biophys. Acta, Bioenerg., 1969, 172, 242–251.

    Article  CAS  Google Scholar 

  12. C. Bonaventura and J. Myers, Biochim. Biophys. Acta, Bioenerg., 1969, 189, 366–383.

    Article  CAS  Google Scholar 

  13. J. Minagawa, Biochim. Biophys. Acta, Bioenerg., 2011, 1807, 897–905.

    Article  CAS  Google Scholar 

  14. S. Lemeille and J.-D. Rochaix, Photosynth. Res., 2010, 106, 33–46.

    Article  CAS  PubMed  Google Scholar 

  15. P. Pesaresi, M. Pribil, T. Wunder and D. Leister, Biochim. Biophys. Acta, Bioenerg., 2011, 1807, 887–896.

    Article  CAS  Google Scholar 

  16. N. Depège, S. Bellafiore and J.-D. Rochaix, Science, 2003, 299, 1572–1575.

    Article  PubMed  CAS  Google Scholar 

  17. S. Bellafiore, F. Barneche, G. Peltier and J.-D. Rochaix, Nature, 2005, 433, 892.

    Article  CAS  PubMed  Google Scholar 

  18. A. V. Vener, P. J. van Kan, A. Gal, B. Andersson and I. Ohad, J. Biol. Chem., 1995, 270, 25225–25232.

    Article  CAS  PubMed  Google Scholar 

  19. A. V. Vener, P. J. Van Kan, P. R. Rich, I. Ohad and B. Andersson, Proc. Natl. Acad. Sci. U. S. A., 1997, 94, 1585–1590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. F. Zito, G. Finazzi, R. Delosme, W. Nitschke, D. Picot and F. A. Wollman, EMBO J., 1999, 18, 2961–2969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Z. Zhang, L. Huang, V. M. Shulmeister, Y.-I. Chi, K. K. Kim, L.-W. Hung, A. R. Crofts, E. A. Berry and S.-H. Kim, Nature, 1998, 392, 677.

    Article  CAS  PubMed  Google Scholar 

  22. C. Breyton, J. Biol. Chem., 2000, 275, 13195–13201.

    Article  CAS  PubMed  Google Scholar 

  23. G. Finazzi, F. Zito, R. P. Barbagallo and F.-A. Wollman, J. Biol. Chem., 2001, 276, 9770–9774.

    Article  CAS  PubMed  Google Scholar 

  24. L. Dumas, F. Zito, S. Blangy, P. Auroy, X. Johnson, G. Peltier and J. Alric, Proc. Natl. Acad. Sci. U. S. A., 2017, 114, 12063–12068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. U. K. Larsson, B. Jergil and B. Andersson, Eur. J. Biochem., 1983, 136, 25–29.

    Article  CAS  PubMed  Google Scholar 

  26. D. Kyle, L. Staehelin and C. Arntzen, Arch. Biochem. Biophys., 1983, 222, 527–541.

    Article  CAS  PubMed  Google Scholar 

  27. M. Pribil, P. Pesaresi, A. Hertle, R. Barbato and D. Leister, PLoS Biol., 2010, 8, e1000288.

  28. A. Shapiguzov, B. Ingelsson, I. Samol, C. Andres, F. Kessler, J.-D. Rochaix, A. V. Vener and M. Goldschmidt-Clermont, Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 4782–4787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. F.-A. Wollman and C. Lemaire, Biochim. Biophys. Acta, Bioenerg., 1988, 933, 85–94.

    Article  CAS  Google Scholar 

  30. A. N. Glazer, Biochim. Biophys. Acta, 1984, 768, 29–51.

    Article  CAS  Google Scholar 

  31. R. MacColl, J. Struct. Biol., 1998, 124, 311–334.

    Article  CAS  PubMed  Google Scholar 

  32. N. Adir, Photosynth. Protein Complexes, 2008, 243–274.

  33. N. Adir, S. Bar-Zvi and D. Harris, Biochim. Biophys. Acta, Bioenerg., 2019, DOI: 10.1016/j.bbabio.2019.07.002.

  34. M. Watanabe and M. Ikeuchi, Photosynth. Res., 2013, 116, 265–276.

    Article  CAS  PubMed  Google Scholar 

  35. D. A. Bryant, Microbiology, 1982, 128, 835–844.

    Article  CAS  Google Scholar 

  36. A. R. Holzwarth, Physiol. Plant., 1991, 83, 518–528.

    Article  CAS  Google Scholar 

  37. I. Eisenberg, F. Caycedo-Soler, D. Harris, S. Yochelis, S. F. Huelga, M. B. Plenio, N. Adir, N. Keren and Y. Paltiel, J. Phys. Chem. B, 2017, 121, 1240–1247.

    Article  CAS  PubMed  Google Scholar 

  38. T. Mirkovic, E. E. Ostroumov, J. M. Anna, R. Van Grondelle and G. D. Scholes, Chem. Rev., 2016, 117, 249–293.

    Article  PubMed  CAS  Google Scholar 

  39. M. Şener, J. Strümpfer, J. Hsin, D. Chandler, S. Scheuring, C. N. Hunter and K. Schulten, ChemPhysChem, 2011, 12, 518–531.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. C. Dong, A. Tang, J. Zhao, C. W. Mullineaux, G. Shen and D. A. Bryant, Biochim. Biophys. Acta, Bioenerg., 2009, 1787, 1122–1128.

    Article  CAS  Google Scholar 

  41. M. K. Ashby and C. W. Mullineaux, Photosynth. Res., 1999, 61, 169–179.

    Article  CAS  Google Scholar 

  42. J. Zhao, J. Zhou and D. Bryant, Photosynth. Res, 1992, 34, 83.

    Google Scholar 

  43. P. I. Calzadilla, F. Muzzopappa, P. Sétif and D. Kirilovsky, Biochim. Biophys. Acta, Bioenerg., 2019, 1860, 488–498.

    Article  CAS  Google Scholar 

  44. D. V. Zlenko, I. V. Elanskaya, E. P. Lukashev, Y. V. Bolychevtseva, N. E. Suzina, E. S. Pojidaeva, I. A. Kononova, A. V. Loktyushkin and I. N. Stadnichuk, Biochim. Biophys. Acta, Bioenerg., 2019, 1860, 155–166.

    Article  CAS  Google Scholar 

  45. J. F. Allen, J. Bennett, K. E. Steinback and C. J. Arntzen, Nature, 1981, 291, 25.

    Article  CAS  Google Scholar 

  46. C. W. Mullineaux and J. F. Allen, Photosynth. Res., 1990, 23, 297–311.

    Article  CAS  PubMed  Google Scholar 

  47. R. Van Dorssen, J. Breton, J. Plijter, K. Satoh, H. Van Gorkom and J. Amesz, Biochim. Biophys. Acta, Bioenerg., 1987, 893, 267–274.

    Article  Google Scholar 

  48. D. Siefermann-Harms, J. Chromatogr. A, 1988, 448, 411–416.

    Article  CAS  Google Scholar 

  49. A. N. Glazer and L. Stryer, Biophys. J., 1983, 43, 383–386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. M. Wu, P. M. Goodwin, W. P. Ambrose and R. A. Keller, J. Phys. Chem., 1996, 100, 17406–17409.

    Article  CAS  Google Scholar 

  51. M. D. McConnell, R. Koop, S. Vasil’ev and D. Bruce, Plant Physiol., 2002, 130, 1201–1212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. P. I. Calzadilla, J. Zhan, P. Sétif, C. Lemaire, D. Solymosi, N. Battchikova, Q. Wang and D. Kirilovsky, Plant Cell, 2019, 31, 911–931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. U. Schreiber, W. Bilger and C. Neubauer, in Ecophysiology of photosynthesis, Springer, 1995, pp. 49–70.

  54. W. Remelli and S. Santabarbara, Biochim. Biophys. Acta, Bioenerg., 2018, 1859, 1207–1222.

    Article  CAS  Google Scholar 

  55. P. Jordan, P. Fromme, H. T. Witt, O. Klukas, W. Saenger and N. Krauß, Nature, 2001, 411, 909.

    Article  CAS  PubMed  Google Scholar 

  56. Y. Umena, K. Kawakami, J.-R. Shen and N. Kamiya, Nature, 2011, 473, 55.

    Article  CAS  PubMed  Google Scholar 

  57. H. Liu, H. Zhang, D. M. Niedzwiedzki, M. Prado, G. He, M. L. Gross and R. E. Blankenship, Science, 2013, 342, 1104–1107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. C. W. Mullineaux, Biochim. Biophys. Acta, Bioenerg., 1992, 1100, 285–292.

    Article  CAS  Google Scholar 

  59. M. G. Rakhimberdieva, V. A. Boichenko, N. V. Karapetyan and I. N. Stadnichuk, Biochemistry, 2001, 40, 15780–15788.

    Article  CAS  PubMed  Google Scholar 

  60. A. Ley and W. Butler, Biochim. Biophys. Acta, Bioenerg., 1980, 592, 349–363.

    Article  CAS  Google Scholar 

  61. J. Olive, G. Ajlani, C. Astier, M. Recouvreur and C. Vernotte, Biochim. Biophys. Acta, Bioenerg., 1997, 1319, 275–282.

    Article  CAS  Google Scholar 

  62. J. Biggins and D. Bruce, Photosynth. Res., 1989, 20, 1–34.

    Article  CAS  PubMed  Google Scholar 

  63. J. Biggins, N. A. Tanguay and H. A. Frank, FEBS Lett., 1989, 250, 271–274.

    Article  CAS  PubMed  Google Scholar 

  64. C. Vernotte, M. Picaud, D. Kirilovsky, J. Olive, G. Ajlani and C. Astier, Photosynth. Res., 1992, 32, 45–57.

    Article  CAS  PubMed  Google Scholar 

  65. K. El Bissati, E. Delphin, N. Murata, A.-L. Etienne and D. Kirilovsky, Biochim. Biophys. Acta, Bioenerg., 2000, 1457, 229–242.

    Article  Google Scholar 

  66. S. Federman, S. Malkin and A. Scherz, Photosynth. Res., 2000, 64, 199.

    Article  CAS  PubMed  Google Scholar 

  67. L. Tian, I. H. van Stokkum, R. B. Koehorst, A. Jongerius, D. Kirilovsky and H. van Amerongen, J. Am. Chem. Soc., 2011, 133, 18304–18311.

    Article  CAS  PubMed  Google Scholar 

  68. H. Li, D. Li, S. Yang, J. Xie and J. Zhao, Biochim. Biophys. Acta, Bioenerg., 2006, 1757, 1512–1519.

    Article  CAS  Google Scholar 

  69. C. W. Mullineaux and J. F. Allen, FEBS Lett., 1986, 205, 155–160.

    Article  CAS  Google Scholar 

  70. M. Aoki and S. Katoh, Biochim. Biophys. Acta, Bioenerg., 1982, 682, 307–314.

    Article  CAS  Google Scholar 

  71. C. W. Mullineaux, Biochim. Biophys. Acta, Bioenerg., 2014, 1837, 503–511.

    Article  CAS  Google Scholar 

  72. M. Misumi, H. Katoh, T. Tomo and K. Sonoike, Plant Cell Physiol., 2015, 57, 1510–1517.

    PubMed  PubMed Central  Google Scholar 

  73. C. Huang, X. Yuan, J. Zhao and D. A. Bryant, Biochim. Biophys. Acta, Bioenerg., 2003, 1607, 121–130.

    Article  CAS  Google Scholar 

  74. T. Ogawa, T. Harada, H. Ozaki and K. Sonoike, Plant Cell Physiol., 2013, 54, 1164–1171.

    Article  CAS  PubMed  Google Scholar 

  75. Y. V. Bolychevtseva, F. Kuzminov, I. Elanskaya, M. Y. Gorbunov and N. Karapetyan, Biochemistry, 2015, 80, 50–60.

    CAS  PubMed  Google Scholar 

  76. T. Ogawa and K. Sonoike, J. Photochem. Photobiol., B, 2015, 144, 61–67.

    Article  CAS  Google Scholar 

  77. C. Vernotte, C. Astier and J. Olive, Photosynth. Res., 1990, 26, 203–212.

    Article  CAS  PubMed  Google Scholar 

  78. D. Emlyn-Jones, M. K. Ashby and C. W. Mullineaux, Mol. Microbiol., 1999, 33, 1050–1058.

    Article  CAS  PubMed  Google Scholar 

  79. V. Chukhutsina, L. Bersanini, E.-M. Aro and H. Van Amerongen, Sci. Rep., 2015, 5, 14193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. I. N. Stadnichuk, E. P. Lukashev and I. V. Elanskaya, Photosynth. Res., 2009, 99, 227–241.

    Article  CAS  PubMed  Google Scholar 

  81. D. Bruce, S. Brimble and D. A. Bryant, Biochim. Biophys. Acta, Bioenerg., 1989, 974, 66–73.

    Article  CAS  Google Scholar 

  82. D. Li, J. Xie, Y. Zhao and J. Zhao, Biochim. Biophys. Acta, Bioenerg., 2003, 1557, 35–40.

    Article  CAS  Google Scholar 

  83. D. Li, J. Xie, J. Zhao, A. Xia, D. Li and Y. Gong, Biochim. Biophys. Acta, Bioenerg., 2004, 1608, 114–121.

    Article  CAS  Google Scholar 

  84. C. Boulay, L. Abasova, C. Six, I. Vass and D. Kirilovsky, Biochim. Biophys. Acta, Bioenerg., 2008, 1777, 1344–1354.

    Article  CAS  Google Scholar 

  85. C. Dong and J. Zhao, Chin. Sci. Bull., 2008, 53, 3422–3424.

    CAS  Google Scholar 

  86. C. W. Mullineaux, M. J. Tobin and G. R. Jones, Nature, 1997, 390, 421.

    Article  CAS  Google Scholar 

  87. M. Sarcina, M. J. Tobin and C. W. Mullineaux, J. Biol. Chem., 2001, 276, 46830–46834.

    Article  CAS  PubMed  Google Scholar 

  88. S. Yang, Z. Su, H. Li, J. Feng, J. Xie, A. Xia, Y. Gong and J. Zhao, Biochim. Biophys. Acta, Bioenerg., 2007, 1767, 15–21.

    Article  CAS  Google Scholar 

  89. S. Joshua and C. W. Mullineaux, Plant Physiol., 2004, 135, 2112–2119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. M. Gwizdala, R. Berera, D. Kirilovsky, R. Van Grondelle and T. P. Krüger, J. Am. Chem. Soc., 2016, 138, 11616–11622.

    Article  CAS  PubMed  Google Scholar 

  91. D. Jallet, M. Gwizdala and D. Kirilovsky, Biochim. Biophys. Acta, Bioenerg., 2012, 1817, 1418–1427.

    Article  CAS  Google Scholar 

  92. S. Joshua and C. W. Mullineaux, Biochim. Biophys. Acta, Bioenerg., 2005, 1709, 58–68.

    Article  CAS  Google Scholar 

  93. G. Deng, F. Liu, X. Liu and J. Zhao, FEBS Lett., 2012, 586, 2342–2345.

    Article  CAS  PubMed  Google Scholar 

  94. J. Zhao, L. Chen, F. Gao, Q. Wang, Z. Qiu and W. Ma, Acta Biochim. Biophys. Sin., 2014, 46, 911–916.

    Article  CAS  PubMed  Google Scholar 

  95. C. W. Mullineaux, Photosynth. Res., 2008, 95, 175.

    Article  CAS  PubMed  Google Scholar 

  96. C. W. Mullineaux, Biochim. Biophys. Acta, Bioenerg., 1994, 1184, 71–77.

    Article  CAS  Google Scholar 

  97. D. Bald, J. Kruip and M. Rögner, Photosynth. Res., 1996, 49, 103–118.

    Article  CAS  PubMed  Google Scholar 

  98. W. M. Schluchter, G. Shen, J. Zhao and D. A. Bryant, Photochem. Photobiol., 1996, 64, 53–66.

    Article  CAS  PubMed  Google Scholar 

  99. C. L. Aspinwall, M. Sarcina and C. W. Mullineaux, Photosynth. Res., 2004, 79, 179.

    Article  CAS  PubMed  Google Scholar 

  100. A. Strašková, G. Steinbach, G. Konert, E. Kotabová, J. Komenda, M. Tichý and R. Kaňa, Biochim. Biophys. Acta, Bioenerg., 2019, DOI: 10.1016/j.bbabio.2019.07.008.

  101. W. F. Vermaas, J. A. Timlin, H. D. Jones, M. B. Sinclair, L. T. Nieman, S. W. Hamad, D. K. Melgaard and D. M. Haaland, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 4050–4055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. D. M. Sherman, T. A. Troyan and L. A. Sherman, Plant Physiol., 1994, 106, 251–262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. S. Casella, F. Huang, D. Mason, G.-Y. Zhao, G. N. Johnson, C. W. Mullineaux and L.-N. Liu, Mol. Plant, 2017, 10, 1434–1448.

    Article  CAS  PubMed  Google Scholar 

  104. G. Steinbach, F. Schubert and R. Kaňa, J. Photochem. Photobiol., B, 2015, 152, 395–399.

    Article  CAS  Google Scholar 

  105. R. Kaňa, E. Kotabová, O. Komárek, B. Šedivá, G. C. Papageorgiou and O. Prášil, Biochim. Biophys. Acta, Bioenerg., 2012, 1817, 1237–1247.

    Article  CAS  Google Scholar 

  106. R. R. Choubeh, E. Wientjes, P. C. Struik, D. Kirilovsky and H. van Amerongen, Biochim. Biophys. Acta, Bioenerg., 2018, 1859, 1059–1066.

    Article  CAS  Google Scholar 

  107. K. Kondo, C. W. Mullineaux and M. Ikeuchi, Photosynth. Res., 2009, 99, 217–225.

    Article  CAS  PubMed  Google Scholar 

  108. W. Zhao, J. Xie and J. Zhao, Chin. Sci. Bull., 2014, 59, 4712–4719.

    Article  CAS  Google Scholar 

  109. D. Bruce, J. Biggins, T. Steiner and M. Thewalt, Biochim. Biophys. Acta, Bioenerg., 1985, 806, 237–246.

    Article  CAS  Google Scholar 

  110. J. Olive, O. Vallon, F.-A. Wollman, M. Recouvreur and P. Bennoun, Biochim. Biophys. Acta, Bioenerg., 1986, 851, 239–248.

    Article  CAS  Google Scholar 

  111. I. M. Folea, P. Zhang, E.-M. Aro and E. J. Boekema, FEBS Lett., 2008, 582, 1749–1754.

    Article  CAS  PubMed  Google Scholar 

  112. E. G. Maksimov, K. S. Mironov, M. S. Trofimova, N. L. Nechaeva, D. A. Todorenko, K. E. Klementiev, G. V. Tsoraev, E. V. Tyutyaev, A. A. Zorina and P. V. Feduraev, Photosynth. Res., 2017, 133, 215–223.

    CAS  PubMed  Google Scholar 

  113. K. El Bissati and D. Kirilovsky, Plant Physiol., 2001, 125, 1988–2000.

    Article  PubMed  PubMed Central  Google Scholar 

  114. C. W. Mullineaux, S. Griebenow and S. E. Braslavsky, Biochim. Biophys. Acta, 1991, 1060, 315–318.

    Article  CAS  Google Scholar 

  115. D. Bruce and O. Salehian, Biochim. Biophys. Acta, Bioenerg., 1992, 1100, 242–250.

    Article  CAS  Google Scholar 

  116. W. P. Williams and P. J. Dominy, Biochim. Biophys. Acta, Bioenerg., 1990, 1015, 121–130.

    Article  CAS  Google Scholar 

  117. H.-B. Mao, G.-F. Li, X. Ruan, Q.-Y. Wu, Y.-D. Gong, X.-F. Zhang and N.-M. Zhao, FEBS Lett., 2002, 519, 82–86.

    Article  CAS  PubMed  Google Scholar 

  118. A. G. Roberts, M. K. Bowman and D. M. Kramer, Biochemistry, 2004, 43, 7707–7716.

    Article  CAS  PubMed  Google Scholar 

  119. J. Yan, G. Kurisu and W. A. Cramer, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 69–74.

    Article  CAS  PubMed  Google Scholar 

  120. J. F. Allen, C. E. Sanders and N. G. Holmes, FEBS Lett., 1985, 193, 271–275.

    Article  CAS  Google Scholar 

  121. J. F. Allen and N. G. Holmes, FEBS Lett., 1986, 202, 175–181.

    Article  CAS  Google Scholar 

  122. M. A. Harrison, N. F. Tsinoremas and J. F. Allen, FEBS Lett., 1991, 282, 295–299.

    Article  CAS  PubMed  Google Scholar 

  123. M.-k. Yang, Z.-x. Qiao, W.-y. Zhang, Q. Xiong, J. Zhang, T. Li, F. Ge and J.-d. Zhao, J. Proteome Res., 2013, 12, 1909–1923.

    Article  CAS  PubMed  Google Scholar 

  124. Z. Chen, J. Zhan, Y. Chen, M. Yang, C. He, F. Ge and Q. Wang, Plant Cell Physiol., 2015, 56, 1997–2013.

    Article  CAS  PubMed  Google Scholar 

  125. P. Spaet, B. Maček and K. Forchhammer, Fron. Microbiol., 2015, 6, 248.

    Google Scholar 

  126. M. Nanba and S. Katoh, Biochim. Biophys. Acta, Bioenerg., 1985, 809, 74–80.

    Article  CAS  Google Scholar 

  127. R. Vladkova, J. Biomol. Struct. Dyn., 2016, 34, 824–854.

    Google Scholar 

  128. C. E. Sanders, A. Melis and J. F. Allen, Biochim. Biophys. Acta, Bioenerg., 1989, 976, 168–172.

  129. J. F. Allen, Biochim. Biophys. Acta, Bioenerg., 1992, 1098, 275–335.

    Article  CAS  Google Scholar 

  130. J. Biggins, C. L. Campbell and D. Bruce, Biochim. Biophys. Acta, Bioenerg., 1984, 767, 138–144.

    Article  CAS  Google Scholar 

  131. A. Krupa and N. Srinivasan, BMC Genomics, 2005, 6, 129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. J. Perez, A. Castaneda-Garcia, H. Jenke-Kodama, R. Müller and J. Munoz-Dorado, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 15950–15955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. N. H. Mann, Microbiology, 1994, 140, 3207–3215.

    Article  CAS  PubMed  Google Scholar 

  134. T. Kaneko, S. Sato, H. Kotani, A. Tanaka, E. Asamizu, Y. Nakamura, N. Miyajima, M. Hirosawa, M. Sugiura and S. Sasamoto, DNA Res., 1996, 3, 109–136.

    Article  CAS  PubMed  Google Scholar 

  135. C.-C. Zhang, L. Gonzalez and V. Phalip, Nucleic Acids Res., 1998, 26, 3619–3625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. A. Kamei, T. Yuasa, X. Geng and M. Ikeuchi, DNA Res., 2002, 9, 71–78.

    Article  CAS  PubMed  Google Scholar 

  137. C. J. Leonard, L. Aravind and E. V. Koonin, Genome Res., 1998, 8, 1038–1047.

    Article  CAS  PubMed  Google Scholar 

  138. A. Zorina, Russ. J. Plant Physiol., 2013, 60, 589–596.

    Article  CAS  Google Scholar 

  139. A. Kamei, T. Yuasa, K. Orikawa, X. X. Geng and M. Ikeuchi, J. Bacteriol., 2001, 183, 1505–1510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. A. Mata-Cabana, M. García-Domínguez, F. J. Florencio and M. Lindahl, Antioxid. Redox Signaling, 2012, 17, 521–533.

    Article  CAS  Google Scholar 

  141. C. Liang, X. Zhang, X. Chi, X. Guan, Y. Li, S. Qin and H. bo Shao, PLoS One, 2011, 6, e18718.

  142. A. Zorina, V. Bedbenov, G. Novikova and V. Panichkin, Mol. Biol., 2014, 48, 390–398.

    Article  CAS  Google Scholar 

  143. S. Laurent, J. Jang, A. Janicki, C.-C. Zhang and S. Bedu, Microbiology, 2008, 154, 2161–2167.

    Article  CAS  PubMed  Google Scholar 

  144. A. Galkin, L. Mikheeva and S. Shestakov, Mikrobiologiia, 2003, 72, 64–69.

    CAS  PubMed  Google Scholar 

  145. A. Zorina, N. Stepanchenko, G. V. Novikova, M. Sinetova, V. B. Panichkin, I. E. Moshkov, V. V. Zinchenko, S. V. Shestakov, I. Suzuki and N. Murata, DNA Res., 2011, 18, 137–151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. M. Angeleri, A. Zorina, E. M. Aro and N. Battchikova, FEBS Lett., 2018, 592, 411–421.

    Article  CAS  PubMed  Google Scholar 

  147. G. Schansker, S. Z. Tóth, L. Kovács, A. R. Holzwarth and G. Garab, Biochim. Biophys. Acta, Bioenerg., 2011, 1807, 1032–1043.

    Article  CAS  Google Scholar 

  148. M. Magyar, G. Sipka, L. Kovács, B. Ughy, Q. Zhu, G. Han, V. Špunda, P. H. Lambrev, J.-R. Shen and G. Garab, Sci. Rep., 2018, 8, 2755.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. G. Sipka, P. Müller, K. Brettel, M. Magyar, L. Kovács, Q. Zhu, Y. Xiao, G. Han, P. H. Lambrev and J. R. Shen, Physiol. Plant., 2019, 166, 22–32.

    Article  CAS  PubMed  Google Scholar 

  150. G. Schansker, S. Z. Tóth, A. R. Holzwarth and G. Garab, Photosynth. Res., 2014, 120, 43–58.

    Article  CAS  PubMed  Google Scholar 

  151. Y. Shibata, S. Nishi, K. Kawakami, J.-R. Shen and T. Renger, J. Am. Chem. Soc., 2013, 135, 6903–6914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. A. Guskov, J. Kern, A. Gabdulkhakov, M. Broser, A. Zouni and W. Saenger, Nat. Struct. Mol. Biol., 2009, 16, 334.

    Article  CAS  PubMed  Google Scholar 

  153. J.-Y. Huang, Y.-F. Chiu, J. M. Ortega, H.-T. Wang, T.-S. Tseng, S.-C. Ke, M. Roncel and H.-A. Chu, Biochemistry, 2016, 55, 2214–2226.

    Article  CAS  PubMed  Google Scholar 

  154. B. E. Rubin, K. M. Wetmore, M. N. Price, S. Diamond, R. K. Shultzaberger, L. C. Lowe, G. Curtin, A. P. Arkin, A. Deutschbauer and S. S. Golden, Proc. Natl. Acad. Sci. U. S. A., 2015, 112, E6634–E6643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. S. Yang, R. Zhang, C. Hu, J. Xie and J. Zhao, Photosynth. Res., 2009, 99, 99–106.

    Article  CAS  PubMed  Google Scholar 

  156. T. Fujimori, Y. Hihara and K. Sonoike, J. Biol. Chem., 2005, 280, 22191–22197.

    Article  CAS  PubMed  Google Scholar 

  157. D. Bruce and J. Biggins, Biochim. Biophys. Acta, Bioenerg., 1985, 810, 295–301.

    Article  CAS  Google Scholar 

  158. O. Salehian and D. Bruce, J. Lumin., 1992, 51, 91–98.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Université Paris-Saclay, CNRS, CEA, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif sur Yvette, France

    Pablo I. Calzadilla & Diana Kirilovsky

Authors
  1. Pablo I. Calzadilla
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Diana Kirilovsky
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Diana Kirilovsky.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 License, which permits any non-commercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc/3.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Calzadilla, P.I., Kirilovsky, D. Revisiting cyanobacterial state transitions. Photochem Photobiol Sci 19, 585–603 (2020). https://doi.org/10.1039/c9pp00451c

Download citation

  • Received: 18 November 2019

  • Accepted: 20 February 2020

  • Published: 27 October 2020

  • Issue Date: May 2020

  • DOI: https://doi.org/10.1039/c9pp00451c

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.