Skip to main content

Advertisement

Log in

Energy transfer-mediated white light emission from Nile red-doped 9,10-diphenylanthracene nanoaggregates upon excitation with near UV light

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The low cost, ease of preparation, colour tunability and wide application range garnered huge research interest on organic light emitting diode materials (OLED). The development of white light-emitting organic diode materials is mostly targeted for this. Anthracene derivatives have recently emerged as low-cost and efficient blue light-emitting diodes. However, developing efficient organic diode materials that cover the entire visible spectrum is very challenging. Herein, we demonstrated that Nile red (NR)-doped 9,10-diphenylanthracene (DPA) nanoaggregates provided strong white light emission upon excitation with near UV light. The dual emissions of the DPA nanoaggregates covering the blue and green regions were exploited and combined with the controlled red emission of the properly doped NR dye to cover the full visible spectrum, rendering white light emission with a quantum yield of >0.4. The fluorescence spectra of the DPA nanoaggregates doped with NR at various concentrations were monitored and their CIE coordinates were followed to evaluate the proper doping ratio for equal-energy white-light emission. Concurrent time-resolved emission studies provided mechanistic insights into the energy transfer from the exciton and excimer states of DPA to NR. It was revealed that the energy transfer from the singlet excitonic state of DPA followed the diffusion-assisted resonance energy transfer (RET) model. On the other hand, the excimer state showed negligible diffusion and energy transfer from this state found to follow the single-step Förster resonance energy transfer mechanism. The observation of efficient white light emission in the doped DPA nanoaggregates was proposed to have prospective applications in OLED devices, given the fact that triplet excitons may be exploited for emission through the efficient triplet– triplet annihilation contribution to fluorescence enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. P. Xu, Y. Q. Li and J. X. Tang, Recent advances in flexible organic light-emitting diodes, J. Mater. Chem. C, 2016, 4, 9116.

    Article  CAS  Google Scholar 

  2. M. Y. Wong, Recent advances in polymer organic light-emitting diodes (PLED) using non-conjugated polymers as the emitting layer and contrasting them with conjugated counterparts, J. Electron. Mater., 2017, 46, 6246.

    Article  CAS  Google Scholar 

  3. J. Li, L. Xu, C. W. Tang and A. A. Shestopalov, High-resolution organic light-emitting diodes patterned via contact printing, ACS Appl. Mater. Interfaces, 2016, 8, 16809.

    CAS  Google Scholar 

  4. H. Xu, R. Chen, Q. Sun, W. Lai, Q. Su, W. Huang and X. Liu, Recent progress in metal–organic complexes for optoelectronic applications, Chem. Soc. Rev., 2014, 43, 3259.

    Article  CAS  PubMed  Google Scholar 

  5. J. K. Borchardt, Developments in organic displays, Materials Today, 2004, 7, 42.

    Article  Google Scholar 

  6. O. Ostroverkhova, Organic optoelectronic materials: mechanisms and applications, Chem. Rev., 2016, 116, 13279.

  7. J. Liu, C.-T. Chen and C. H. Chen, Introduction to organic light emitting diode (OLED), John Wiley & Sons, Ltd., 2015.

  8. H. Sasabe and J. Kido, Eur. Recent Progress in Phosphorescent Organic Light-Emitting Devices, J. Org. Chem., 2013, 34, 7653.

    Google Scholar 

  9. K. T. Kamtekar, A. P. Monkman and M. R. Bryce, Recent advances in white organic light-emitting materials and devices (WOLEDs), Adv. Mater., 2010, 22, 572.

    CAS  Google Scholar 

  10. S.-F. Wu, S.-H. Li, Y.-K. Wang, C.-C. Huang, Q. Sun, J.-J. Liang, L.-S. Liao and M.-K. Fung, White Organic LED with a Luminous Efficacy Exceeding 100 lm W−1 without Light Out-Coupling Enhancement Techniques, Adv. Funct. Mater., 2017, 27, 1701314.

    Google Scholar 

  11. S. Wu, S. Li, Q. Sun, C. Huang and M.-K. Fung, Highly efficient white organic light-emitting diodes with ultrathin emissive layers and a spacer-free structure, Sci. Rep., 2016, 6, 25821.

    CAS  Google Scholar 

  12. W. Hua, X. Du, W. Su, W. Lin and D. Zhang, Full phosphorescent white-light organic light-emitting diodes with improved color stability and efficiency by fine tuning primary emission contributions, AIP Adv., 2014, 4, 027103.

    Google Scholar 

  13. J.-Y. Wu and S.-A. Chen, Development of a highly efficient hybrid white organic-light-emitting diode with a single emission layer by solution processing, ACS Appl. Mater. Interfaces, 2018, 10, 4851.

    CAS  Google Scholar 

  14. S. Krotkus, D. Kasemann, S. Lenk, K. Leo and S. Reineke, Adjustable white-light emission from a photo-structured micro-OLED array, Light: Sci. Appl., 2016, 5, e16121.

    Google Scholar 

  15. Y. Miao, P. Tao, K. Wang, H. Li, B. Zhao, L. Gao, H. Wang, B. Xu and Q. Zhao, Highly efficient red and white organic light-emitting diodes with external quantum efficiency beyond 20% by employing pyridylimidazole-based metallophosphors, ACS Appl. Mater. Interfaces, 2017, 9, 37873.

    CAS  Google Scholar 

  16. S. Das, T. Debnath, A. Basu, D. Ghosh, A. K. Das, G. A. Baker and A. Patra, Efficient white-light eeneration from ionically self-assembled triply-fluorescent organic nanoparticles, Chem.Eur. J., 2016, 22, 8855.

    Article  CAS  PubMed  Google Scholar 

  17. R. M. Adhikari, K. C. Anyaogu, D. C. Neckers and B. K. Shah, White light emission from co-precipitated organic nanoparticle composites, J. Nanosci. Nanotechnol., 2010, 10, 8004.

    Article  CAS  PubMed  Google Scholar 

  18. Y. Yang, M. Lowry, C. M. Schowalter, S. O. Fakayode, J. O. Escobedo, X. Xu, H. Zhang, T. J. Jensen, F. R. Fronczek, I. M. Warner and R. M. Strongin, An organic white light-emitting fluorophore, J. Am. Chem. Soc., 2006, 128, 14081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Z. He, W. Zhao, J. W. Y. Lam, Q. Peng, H. Ma, G. Liang, Z. Shuai and B. Z. Tang, White light emission from a single organic molecule with dual phosphorescence at room temperature, Nat. Commun., 2017, 8, 416.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. K. Pal, V. Sharma and A. L. Koner, Single-component white-light emission via intramolecular electronic conjugation- truncation with perylenemonoimide, Chem. Commun., 2017, 53, 7909.

    Article  CAS  Google Scholar 

  21. N. N. Zhang, C. Sun, X. M. Jiang, X. S. Xing, Y. Yan, L. Z. Cai, M. S. Wang and G. C. Guo, Single-component small-molecule white light organic phosphors, Chem. Commun., 2017, 53, 9269.

    Article  CAS  Google Scholar 

  22. E. Ravindrana and N. Somanathan, Efficient white-light emission from a single polymer system with “spring-like” self-assemblies induced emission enhancement and intramolecular charge transfer characteristics, J. Mater. Chem. C, 2017, 5, 4763.

    Article  Google Scholar 

  23. C. Y. Chuang, P. I. Shih, C. H. Chien, F. I. Wu and C. F. Shu, Bright-white light-emitting devices based on a single polymer exhibiting simultaneous blue, green, and red emissions, Macromolecules, 2007, 40, 247.

    Article  CAS  Google Scholar 

  24. A. Sakai, M. Tanaka, E. Ohta, Y. Yoshimoto, K. Mizuno and H. Ikeda, White light emission from a single component system: remarkable concentration effects on the fluorescence of 1, 3-diaroylmethanatoboron difluoride, Tetrahedron Lett., 2012, 53, 4138.

    CAS  Google Scholar 

  25. Q. Y. Yang and J. M. Lehn, Bright white-light emission from a Singleorganic compound in the solid state, Angew. Chem., 2014, 126, 4660.

    Google Scholar 

  26. S. Roy, D. Samanta, P. Kumar and T. K. Maji, Pure white light emission and charge transfer in organogels of symmetrical and unsymmetrical π-chromophoric oligo-p-(phenyleneethynylene) bola-amphiphiles, Chem. Commun., 2018, 54, 275.

    Article  CAS  Google Scholar 

  27. D. Li, W. Hu, J. Wang, Q. Zhang, X. M. Cao, X. Ma and H. Tian, White-light emission from a single organic compound with unique self-folded conformation and multistimuli responsiveness, Chem. Sci., 2018, 9, 5709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. M. Bidikoudi, E. Frestaa and R. D. Costa, White perovskite based lighting devices, Chem. Commun., 2018, 54, 8150.

    Article  CAS  Google Scholar 

  29. S. Mukherjee and P. Thilagar, Organic white-light emitting materials, Dyes Pigm., 2014, 110, 2.

    Article  CAS  Google Scholar 

  30. J. Liu, W. Sun and Z. Liu, White-light emitting materials with tunable luminescence based on steady Eu(III) doping of Tb(III) metal–organic frameworks, RSC Adv., 2016, 6, 25689–25694.

    Article  CAS  Google Scholar 

  31. R. Udayabhaskar and B. Karthikeyana, Role of micro-strain and defects on band-gap, fluorescence in near white light emitting Sr doped ZnO nanorods, J. Appl. Phys., 2014, 116, 094310.

    Google Scholar 

  32. W. Lu, Y. Ou, E. M. Fiordaliso, Y. Iwasa, V. Jokubavicius, M. Syväjärvi, S. Kamiyama, P. M. Petersen and H. Ou, White light emission from fluorescent SiC with porous surface, Sci. Rep., 2017, 7, 9798.

    Article  PubMed  PubMed Central  Google Scholar 

  33. S. Samanta, U. Manna and G. Das, White-light emission from simple AIE–ESIPT-excimer tripled single molecular system, New J. Chem., 2017, 41, 1064.

    CAS  Google Scholar 

  34. Y. H. Chen, K. C. Tang, Y. T. Chen, J. Y. Shen, Y. S. Wu, S. H. Liu, C. S. Lee, C. H. Chen, T. Y. Lai, S. H. Tung, R. J. Jeng, W. Y. Hung, M. Jiao, C. C. Wu and P. T. Chou, Insight into the mechanism and outcoupling enhancement of excimer-associated white light generation, Chem. Sci., 2016, 7, 3556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. S. Yang and M. Jiang, White light generation combining emissions from exciplex, excimer and electromer in TAPC-based organic light-emitting diodes, Chem. Phys. Lett., 2009, 484, 54.

    Article  CAS  Google Scholar 

  36. G. V. Baryshnikov, P. Gawrys, K. Ivaniuk, B. Witulski, R. J. Whitby, A. A. Muhammad, B. Minaev, V. Cherpak, P. Stakhira, D. Volyniuk, G. W. Salyga, B. Luszczynska, A. Lazauskas, S. Tamuleviciush and J. V. Grazulevicius, Nine-ring angular fused biscarbazoloanthracene displaying a solid state based excimer emission suitable for OLED application, J. Mater. Chem. C, 2016, 4, 5795.

    Article  CAS  Google Scholar 

  37. E. L. Williams, K. Haavisto, J. Li and G. E. Jabbour, Excimer-based white phosphorescent organic light-emitting diodes with nearly 100% internal quantum efficiency, Adv. Mater., 2007, 19, 197.

    CAS  Google Scholar 

  38. D. Thirion, M. Romain, J. R. Berthelot and C. Poriel, Intramolecular excimer emission as a blue light source in fluorescent organic light emitting diodes: a promising molecular design, J. Mater. Chem., 2012, 22, 7149.

    Article  CAS  Google Scholar 

  39. J. Kalinowski, M. Cocchi, D. Virgili, V. Fattori and J. A. G. Williams, Mixing of excimer and exciplex emission: a new way to improve white light emitting organic electrophosphorescent diodes, Adv. Mater., 2007, 19, 4000.

    CAS  Google Scholar 

  40. Z. Zhao, S. Chen, J. W. Y. Lam, Z. Wang, P. Lu, F. Mahtab, H. H. Y. Sung, I. D. Williams, Y. Ma, H. S. Kwok and B. Z. Tang, Pyrene-substituted ethenes: aggregation-enhanced excimer emission and highly efficient electroluminescence, J. Mater. Chem., 2011, 21, 7210.

    Article  CAS  Google Scholar 

  41. J. Y. Hu, Y. J. Pu, G. Nakta, S. Kawata and H. SasabeaandJ, Kido, A single-molecule excimer-emitting compound for highly efficient fluorescent organic light-emitting devices, Chem. Commun., 2012, 48, 8434.

    Article  CAS  Google Scholar 

  42. L. Murphy, P. Brulatti, V. Fattori, M. Cochchi and J. A. Williams, Blue-shifting the monomer and excimer phosphorescence of tridentate cyclometallated platinum(II) complexes for optimal white-light OLEDs, Chem. Commun., 2012, 48, 5817.

    Article  CAS  Google Scholar 

  43. J. V. Morris, M. A. Mahaney and R. Huber, Fluorescence quantum yield determinations. 9, 10-Diphenylanthracene as a reference standard in different solvents, J. Phys. Chem., 1976, 80, 969.

    Article  CAS  Google Scholar 

  44. W. R. Dawson and M. W. Windsor, Fluorescence yields of aromatic compounds, J. Phys. Chem., 1968, 72, 3251.

    Article  CAS  Google Scholar 

  45. I. B. Berlman, Handbook of fluorescence Spectra of Aromatic Molecules, Academic Press, New. York, 1971.

  46. C. A. Heller, R. A. Henry, B. A. McLaughlin and D. E. Bliss, Fluorescence spectra and quantum yields. Quinine, uranine, 9, 10-diphenylanthracene, and 9, 10-bis (phenylethynyl) anthracenes, J. Chem. Eng. Data, 1974, 19, 214.

    Article  CAS  Google Scholar 

  47. J. Liu, H. Zhang, H. Dong, L. Meng, L. Jiang, L. Jiang, Y. Wang, J. Yu, Y. Sun, W. Hu and A. J. Heeger, High mobility emissive organic semiconductor, Nat. Commun., 2015, 6, 10032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. B. Yang, J. Xiao, J. I. Wong, J. Guo, Y. Wu, L. Ong, L. L. Lao, F. Boey, H. Zang, H. Ying and Q. Zhang, Shape-controlled micro/nanostructures of 9, 10-diphenylanthracene (DPA) and their application in light-emitting devices, J. Phys. Chem. C, 2011, 115, 7924.

    Article  CAS  Google Scholar 

  49. P. Raghunath, M. A. Reddy, C. Gouri, K. Bhanuprakash and V. J. Rao, Electronic properties of anthracene derivatives for blue light emitting electroluminescent layers in organic light emitting diodes: a density functional theory study, J. Phys. Chem. A, 2006, 110, 1152.

    Article  CAS  PubMed  Google Scholar 

  50. R. K. Hallani, V. F. Hamidabadi, A. J. Huckaba, G. Galliani, A. Babaei, M. G. La-Placa, A. Bahari, I. McCulloch, M. K. Nazeeruddin, M. Sessolo and H. J. Bolink, A new cross-linkable 9,10-diphenylanthracene derivative as a wide bandgap host for solution-processed organic light-emitting diodes, J. Mater. Chem. C, 2018, 6, 12948.

    Google Scholar 

  51. T. Serevičius, R. Komskis, P. Adomėnas, O. Adomėnienė, V. Jankauskas, A. Gruodis, K. Kazlauskas and S. Juršėnas, Non-symmetric 9,10-diphenylanthracene-based deep-blue emitters with enhanced charge transport properties, Phys. Chem. Chem. Phys., 2014, 16, 7089.

    Article  PubMed  Google Scholar 

  52. S. B. Lee, S. N. Park, C. Kim, H. W. Lee, H. W. Lee, Y. K. Kim and S. S. Yoon, Synthesis and electroluminescent properties of 9,10-diphenylanthracene containing 9H-carbazole derivatives for blue organic light-emitting diodes, Synth. Met., 2015, 203, 174.

    CAS  Google Scholar 

  53. D. Y. Kim, Y. S. Kim, S. E. Lee, Y. K. Kim and S. S. Yoon, 9,10-Diphenylanthracene derivative substituted with indole moiety for blue organic light-emitting diodes, Mol. Cryst. Liq. Cryst., 2017, 644, 197.

    Article  CAS  Google Scholar 

  54. A. Nandi, B. Manna and R. Ghosh, Interplay of exciton– excimer dynamics in 9, 10-diphenylanthracene nanoaggregates and thin films revealed by time-resolved spectroscopic studies, Phys. Chem. Chem. Phys., 2019, 21, 11193.

    Google Scholar 

  55. B. Manna, R. Ghosh and D. K. Palit, Exciton dynamics in anthracene nanoaggregates, J. Phys. Chem. C, 2015, 119, 10641.

    Article  CAS  Google Scholar 

  56. B. Manna, A. Nandi and R. Ghosh, Ultrafast singlet exciton fission dynamics in 9, 10-Bis (phenylethynyl) anthracene nanoaggregates and thin films, J. Phys. Chem. C, 2018, 122, 21047.

    Google Scholar 

  57. B. Manna, Temperature dependence of resonance energy transfer in DCM doped anthracene nanoaggregates, J. Lumin., 2019, 209, 379.

    Article  CAS  Google Scholar 

  58. D. L. Sackett and J. Wolff, Nile red as a polarity-sensitive fluorescent probe of hydrophobic protein surfaces, Anal. Biochem., 1987, 167, 228.

    CAS  Google Scholar 

  59. P. Greenspan and D. S. Fowler, Spectrofluorometric studies of the lipid probe, nile red., J. Lipid Res., 1985, 26, 781.

    Article  CAS  Google Scholar 

  60. J. Y. Zheng, C. Zhang, Y. S. Zhao and J. Yao, Detection of chemical vapors with tunable emission of binary organic nanobelts, Phys. Chem. Chem. Phys., 2010, 12, 12935–12938.

    Article  CAS  PubMed  Google Scholar 

  61. J. Zhao, S. Jia and H. Guoa, Triplet–triplet annihilation based upconversion: from triplet sensitizers and triplet acceptors to upconversion quantum yields, RSC Adv., 2011, 1, 937.

    Article  CAS  Google Scholar 

  62. G. W. Kang, Y. J. Ahn, D. Y. Park and C. Lee, Efficient blue electroluminescence from 9,10-diphenylanthracene, Proc. SPIE 4800, Organic Light-Emitting Materials and Devices VI, 2003.

  63. B. Manna and A. Nandi, Manifestation of unforeseen superradiance phenomenon from phenanthrene and chrysene nanoaggregates, J. Phys. Chem. C, 2019, 123, 21281.

    Google Scholar 

  64. C. Burda, X. Chen, R. Narayanan, A. Mostafa and M. A. El- Sayed, Chemistry and properties of nanocrystals of different shapes, Chem. Rev., 2005, 105, 1025.

    Article  CAS  PubMed  Google Scholar 

  65. M. N. Gharge, S. L. Bhattar, G. B. Kolekar and S. R. Patil, Structural and photophysical aspects of perylene- doped anthracene crystalline powders prepared by microwave heating, Indian J. Chem., 2008, 47A, 1642.

    CAS  Google Scholar 

  66. A. Cser and K. Nagy, andL.Biczók, Fluorescence lifetime of Nile Red as a probe for the hydrogen bonding strength with its microenvironment, Chem. Phys. Lett., 2002, 360, 473.

    Article  CAS  Google Scholar 

  67. R. Katoh, S. Sinha, S. Murata and M. Tachiya, Origin of the stabilization energy of perylene excimer as studied by fluorescence and near-IR transient absorption spectroscopy, J. Photochem. Photobiol., A, 2001, 145, 23.

    Article  CAS  Google Scholar 

  68. J. M. Martinho and J. C. Conte, Simultaneous energy transfer from excited monomer and excimer pyrene molecules, J. Chem. Soc., Faraday Trans.2, 1982, 78, 975.

    Article  Google Scholar 

  69. B. Manna, R. Ghosh and D. K. Palit, Ultrafast energy transfer process in doped-anthracene nanoaggregates is controlled by exciton diffusion: multiple doping leads to efficient white light emission, J. Phys. Chem. C, 2016, 120, 7299.

    Article  CAS  Google Scholar 

  70. O. Stern and M. Volmer, Über die Abklingzeit der Fluoreszenz, Phys. Z., 1919, 20, 183.

    CAS  Google Scholar 

  71. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Kluwer Academic/Plenum Publishers, New York, 1999.

    Book  Google Scholar 

  72. C. Wu, Y. Zheng, C. Szymanski and J. McNeill, Energy transfer in a nanoscale multichromophoric system: fluorescent dye-doped conjugated polymer nanoparticles, J. Phys. Chem. C, 2008, 112, 1772.

    Article  CAS  Google Scholar 

  73. M. Mitsui and Y. Kawano, Electronic energy transfer in tetracene- doped p-terphenyl nanoparticles: Extraordinarily high fluorescence enhancement and quenching efficiency, Chem. Phys., 2013, 419, 30.

    Article  CAS  Google Scholar 

  74. T. Förster, Zwischenmolekulare energiewanderung und fluoreszenz, Ann. Phys., 1948, 437, 55.

    Article  Google Scholar 

  75. H. Du, R. C. A. Fuh, J. Li, L. A. Corkan and J. S. Lindsey, PhotochemCAD: a computer-aided design and research tool in photochemistry, Photochem. Photobiol., 1998, 68, 141.

    CAS  Google Scholar 

  76. J. M. Dixon, M. Taniguchi and J. S. Lindsey, PhotochemCAD 2: A refined program with accompanying spectral databases for photochemical calculations, Photochem. Photobiol., 2005, 81, 212.

    Article  CAS  Google Scholar 

  77. O. V. Mikhnenko, P. W. M. Blom and T. Q. Nguyen, Exciton diffusion in organic semiconductors, Energy Environ. Sci., 2015, 8, 1867.

    Google Scholar 

  78. T. Serevičius, S. Komskis, P. Adomėnas, O. Adomėnienė, O. Kreiza, V. Jankauskas, K. Kazlauskas, A. Miasojedovas, V. Jankus, A. Monkman and A. Juršėnas, Triplet–triplet annihilation in 9, 10-diphenylanthracene derivatives: the role of intersystem crossing and exciton diffusion, J. Phys. Chem. C, 2017, 121, 8515.

    Article  CAS  Google Scholar 

  79. H. Yersin, A. F. Rausch, R. Czerwieniec, T. Hofbeck and T. Fischer, The triplet state of organo-transition metal compounds. Triplet harvesting and singlet harvesting for efficient OLEDs, Coord. Chem. Rev., 2011, 255, 2622.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswajit Manna.

Additional information

Electronic supplementary information (ESI) available: Photophysical data and exciton diffusion parameters. See DOI: 10.1039/c9pp00272c

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manna, B., Nandi, A. & Ghosh, R. Energy transfer-mediated white light emission from Nile red-doped 9,10-diphenylanthracene nanoaggregates upon excitation with near UV light. Photochem Photobiol Sci 18, 2748–2758 (2019). https://doi.org/10.1039/c9pp00272c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c9pp00272c

Navigation