Skip to main content
Log in

An antipyrine based fluorescence “turn-on” dual sensor for Zn2+ and Al3+ and its selective fluorescence “turn-off” sensing towards 2,4,6-trinitrophenol (TNP) in the aggregated state

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A 2,6-diformyl-p-cresol (DFC)-4-amino antipyrine (AP) based dual signaling fluorescent Schiff base ligand (DFCAP) is found to exhibit colorimetric and fluorescence turn on selective sensing towards metal ions, Zn2+ and Al3+. It also exhibits a significant aggregation induced emission (AIE) phenomenon by controlling the water–THF solvent ratio which provides robust green emissive fluorogenic aggregates with well-defined morphologies. Turn-on fluorescence enhancements as high as 195 fold and 168 fold in methanol for Al3+ and Zn2+ at 480 nm and 508 nm, respectively, were noticed. The binding constants and stoichiometry determined from the fluorescence titration data are K = 7.63 × 104 M−1 and 3.42 × 104 M−1 and 1:1 complexation for both Al3+ and Zn2+ respectively, supported by Job’s method. DFCAP shows high sensitivity towards the detection of Zn2+ and Al3+ ions with very low detection limit values of ca. ~21 nM and 30 nM respectively. Besides by applying its attractive AIE feature, the green emissive hydrosol functions as a good chemosensor with high sensitivity for a selected explosive TNP through ground state complexation with a LOD value of ca. ~1.74 µM and especially a high Stern–Volmer quenching constant of ca. ~4.14 × 105 M−1. For instant ‘naked eye’ response for the trace detection of TNP in the solution state, we fabricated a simple paper strip that could detect TNP on-site in a fast, inexpensive and simple way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. J. Frederickson, J. Y. Koh and A. I. Bush, The neurobiology of zinc in health and disease, Nat. Rev. Neurosci., 2005, 6, 449–462.

    Article  CAS  PubMed  Google Scholar 

  2. J. M. Berg and Y. G. Shi, The galvanization of biology: a growing appreciation for the roles of zinc, Science, 1996, 271, 1081–1085.

    Article  CAS  PubMed  Google Scholar 

  3. M. Dhanasekaran, S. Negi and Y. Sugiura, Designer Zinc Finger Proteins: Tools for Creating Artificial DNA-Binding Functional Proteins, Acc. Chem. Res., 2006, 39, 45–52.

    Article  CAS  PubMed  Google Scholar 

  4. S. F. Sousa, P. A. Fernandes and M. J. Ramos, The Carboxylate Shift in Zinc Enzymes: A Computational Study, J. Am. Chem. Soc., 2007, 129, 1378–1385.

    Article  CAS  PubMed  Google Scholar 

  5. A. I. Bush, The metallobiology of Alzheimer’s disease, Trends Neurosci., 2003, 26, 207–214.

    Article  CAS  PubMed  Google Scholar 

  6. D. Noy, I. Solomonov, O. Sinkevich, T. Arad, K. Kjaer and I. Sagi, Zinc-Amyloid β Interactions on a Millisecond Time- Scale Stabilize Non, fibrillar Alzheimer-Related Species, J. Am. Chem. Soc., 2008, 130, 1376–1383.

    Article  CAS  PubMed  Google Scholar 

  7. T. P. Flaten and M. Ødegård, Tea, aluminium and Alzheimer’s disease, Food Chem. Toxicol., 1988, 26, 959–960.

    Article  CAS  Google Scholar 

  8. R. A. Yokel, The toxicology of aluminum in the brain: a review, NeuroToxicology, 2000, 21, 813–828.

    CAS  PubMed  Google Scholar 

  9. J. Ren and H. Tian, Thermally Stable Merocyanine Form of Photochromic Spiropyran with Aluminum Ion as a Reversible Photo-driven Sensor in Aqueous Solution, Sensors, 2007, 7, 3166–3178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. D. R. Burwen, S. M. Olsen, L. A. Bland, M. J. Arduino, M. H. Reid and W. R. Jarvis, Kidney Int., 1995, 48, 469–474.

    Article  CAS  PubMed  Google Scholar 

  11. P. Nayak, Aluminum: impacts and disease, Environ. Res., 2002, 89, 101–115.

    CAS  Google Scholar 

  12. G. Berthon, Aluminium speciation in relation to aluminium bioavailability, metabolism and toxicity, Coord. Chem. Rev., 2002, 228, 319–341.

    CAS  Google Scholar 

  13. H. Bielarczyk, A. Jankowska, B. Madziar, A. Matecki, A. Michno and A. Szutowicz, Differentia toxicity of nitric oxide, aluminium, and amyloid β-peptide in SN56 cholinergic cells from mouse septum, Neurochem. Int., 2003, 42, 323–331.

    CAS  Google Scholar 

  14. M. I. Yousef, A. M. EI-Morsy and M. S. Hassan, Aluminium-induced deterioration in reproductive performance and seminal plasma biochemistry of male rabbits: protective role of ascorbic acid, Toxicology, 2005, 215, 97–107.

    Article  CAS  PubMed  Google Scholar 

  15. S. Dey, A. Roy, G. P. Maiti, S. K. Mandal, P. Banerjee and P. Roy, A highly selective and biocompatible chemosensor for sensitive detection of zinc(II), New J. Chem., 2016, 40, 1365–1376.

    CAS  Google Scholar 

  16. M. Shyamal, P. Mazumdar, S. Maity, S. Samanta, G. P. Sahoo and A. Misra, Highly selective turn-on fluorogenic chemosensor for robust quantification of Zn(II) based on aggregation induced emission enhancement feature, ACS Sens., 2016, 1, 739–747.

    Article  CAS  Google Scholar 

  17. P. Roy, K. Dhara, M. Manassero, J. Ratha and P. Banerjee, Selective Fluorescence Zinc Ion Sensing and Binding Behavior of 4-Methyl-2,6-bis(((phenylmethyl)imino)methyl) phenol: Biological Application, Inorg. Chem., 2007, 46, 6405–6512.

    CAS  Google Scholar 

  18. R. Alam, T. Mistri, A. Katarkar, K. Chaudhuri, S. K. Mandal, A. R. Khuda-Bukhsh, K. K. Das and M. Ali, A novel chromo-and fluorogenic dual sensor for Mg2+ and Zn2+ with cell imaging possibilities and DFT studies, Analyst, 2014, 139, 4022–4030.

    Article  CAS  PubMed  Google Scholar 

  19. N. Behera and V. Manivannan, A Probe for Multi Detection of Al3+,Zn2+ andCd2+ Ions via Turn-On Fluorescence Responses, J. Photochem. Photobiol., A, 2018, 353, 77–85.

    CAS  Google Scholar 

  20. S. H. Kim, H. S. Choi, J. Kim, S. J. Lee, D. T. Quang and J. S. Kim, Novel Optical/Electrochemical Selective 1, 2, 3-Triazole Ring-Appended Chemosensor for the Al3 + Ion, Org. Lett., 2010, 12, 560–563.

    CAS  PubMed  Google Scholar 

  21. W. H. Ding, W. Cao, X. J. Zheng, D. C. Fang, W. T. Wong and L. P. Jin, A Highly Selective Fluorescent Chemosensor for AlIII Ion and Fluorescent Species Formed in the Solution, Inorg. Chem., 2013, 52, 7320–7322.

    CAS  Google Scholar 

  22. D. Maity and T. Govindaraju, A differentially selective sensor with fluorescence turn-on response to Zn2+ and dual-mode ratiometric response to Al3+ in aqueous media, Chem. Commun., 2012, 48, 1039–1041.

    Article  CAS  Google Scholar 

  23. Y. Hong, J. W. Y. Lam and B. Z. Tang, Aggregation-Induced Emission, Chem. Soc. Rev., 2011, 40, 5361–5388.

    Article  CAS  PubMed  Google Scholar 

  24. J. Chen, C. C. W. Law, J. W. Y. Lam, Y. Dong, S. M. F. Lo, I. D. Williams, D. Zhu and B. Z. Tang, Synthesis, Light Emission, Nanoaggregation, and Restricted Intramolecular Rotation of 1,1-Substituted 2,3,4,5-Tetraphenylsiloles, Chem. Mater., 2003, 15, 1535–1546.

    Article  CAS  Google Scholar 

  25. X. Chen, X. Y. Shen, E. Guan, Y. Liu, A. Qin, J. Z. Sun and B. Z. Tang, A Pyridinyl- Functionalized Tetraphenylethylene Fluorogen for Specific Sensing of Trivalent Cations, Chem. Commun., 2013, 49, 1503–1505.

    Article  CAS  Google Scholar 

  26. P. Song, X. Chen, Y. Xiang, L. Huang, Z. Zhou, R. Wei and A. Tong, A Ratiometric Fluorescent pH Probe Based on Aggregation-Induced Emission Enhancement and Its Application in Live-Cell Imaging, J. Mater. Chem., 2011, 21, 13470–13475.

    Article  CAS  Google Scholar 

  27. J. Liang, R. T. K. Kwok, H. B. Shi, B. Z. Tang and B. Liu, Fluorescent Light-up Probe with Aggregation-Induced Emission Characteristics for Alkaline Phosphatase Sensing and Activity Study, ACS Appl. Mater. Interfaces, 2013, 5, 8784–8789.

    CAS  Google Scholar 

  28. M. L. Harikumaran Nair and A. Sheela, Synthesis, spectral, thermal and electrochemical studies of oxo molybdenum (V) and dioxo molybdenum(VI) complexes of an azo dye derived from 4-amino-2, 3-dimethyl-1-phenyl pyrazol-5-one, Indian J. Chem., Sect. A: Inorg., Bio-inorg., Phys., Theor. Anal. Chem., 2008, 47, 1787–1792.

    Google Scholar 

  29. Y. Teng, R. Liu, C. Li and H. Zhang, Effect of 4-Aminoantipyrine on oxidative stress induced by glutathione depletion in single human erythrocytes using a micro fluidic device together with fluorescence imaging, J. Hazard. Mater., 2011, 192, 1766–1771.

    Article  CAS  PubMed  Google Scholar 

  30. S. S. Abdel-Rehim, A. M. Ibrahim Magdy and K. F. Khaled, 4-Aminoantipyrine as an Inhibitor of mild Steel Corrosion in HCl Solution, J. Appl. Electrochem., 1999, 29, 593–599.

    Article  Google Scholar 

  31. V. Bhalla, A. Gupta, M. Kumar, D. S. S. Rao and S. K. Prasad, Self-assembled pentacenequinone derivative for trace detection of picric acid, ACS Appl. Mater. Interfaces, 2013, 5, 672–679.

    CAS  Google Scholar 

  32. V. Bhalla, A. Gupta and M. Kumar, Fluorescent nanoaggregates of pentacenequinone derivative for selective sensing of picric acid in aqueous media, Org. Lett., 2012, 14, 3112–3115.

    CAS  Google Scholar 

  33. S. Sandhu, R. Kumar, P. Singh, A. Mahajan, M. Kaur and S. Kumar, Ultratrace detection of nitroaromatics: picric acid responsive aggregation/disaggregation of self-assembled pterphenylbenzimidazolium- based molecular baskets, ACS Appl. Mater. Interfaces, 2015, 7, 10491–10500.

    CAS  Google Scholar 

  34. A. H. Harris, O. F. Binkley and B. M. Chenoweth, Hematuria due to picric acid poisoning at a naval anchorage in Japan, Am. J. Public Health, 1946, 36, 727–733.

    Article  CAS  Google Scholar 

  35. A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher and T. E. Rice, Signaling recognition events with fluorescent sensors and switches, Chem. Rev., 1997, 97, 1515–1566.

    Article  PubMed  Google Scholar 

  36. Y. Salinas, R. M. Manez, M. D. Marcos, F. Sancenon, A. Costero, M. Parra and S. Gil, Optical chemosensors and reagents to detect explosives, Chem. Soc. Rev., 2012, 41, 1261–1296.

    Article  CAS  PubMed  Google Scholar 

  37. R. R. Gagne, C. L. Spiro, T. J. Smith, C. A. Hamann, W. R. Thies and A. K. Schiemke, The synthesis, redox properties, and ligand binding of heterobinuclear transition-metal macrocyclic ligand complexes. Measurement of an apparent delocalization energy in a mixed-valent copper(I) copper(II) complex, J. Am. Chem. Soc., 1981, 103, 4073–4081.

    Article  CAS  Google Scholar 

  38. A. M. Brouwer, Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report), Pure Appl. Chem., 2011, 83, 2213–2228.

    CAS  Google Scholar 

  39. M. Shyamal, P. Mazumdar, S. Maity, G. P. Sahoo, G. Salgado-Moran and A. Misra, Pyrene scaffold as real time fluorescent turn-on chemosensor for selective detection of trace level Al(III) and its aggregation induced emission enhancement, J. Phys. Chem. A, 2016, 120, 210–220.

    Article  CAS  PubMed  Google Scholar 

  40. M. Maeder, Nonlinear Least-Squares Fitting of Multivariate Absorption Data, Anal. Chem., 1990, 62, 2220–2224.

    CAS  Google Scholar 

  41. S. C. Dong, Z. Li and J. G. Qin, New Carbazole-Based Fluorophores: Synthesis, Characterization, and Aggregation-Induced Emission Enhancement, J. Phys. Chem. B, 2009, 113, 434–441.

    Article  CAS  PubMed  Google Scholar 

  42. C. T. Chen, Evolution of Red Organic Light-Emitting Diodes: Materials and Devices, Chem. Mater., 2004, 16, 4389–4400.

    Article  CAS  Google Scholar 

  43. V. Bhalla, A. Gupta and M. Kumar, Fluorescent nanoaggregates of pentacenequinone derivative for selective sensing of picric acid in aqueous media, Org. Lett., 2012, 14, 3112–3115.

    CAS  Google Scholar 

  44. S. Maity, M. Shyamal, D. Das, A. Maity, S. Dey and A. Misra, Proton triggered emission and selective sensing of 2,4,6-trinitrophenol using a fluorescent hydrosol of 2-phenylquinoline, New J. Chem., 2017, 42, 1879–1891.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Misra.

Additional information

Electronic supplementary information (ESI) available: Additional details of a FT-IR study, 1H NMR study, quantitative determination results and also the detailed characterization data to establish the sensory and AIE behavior of DFCAP. See DOI: 10.1039/c9pp00226j

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, S., Maity, A., Shyamal, M. et al. An antipyrine based fluorescence “turn-on” dual sensor for Zn2+ and Al3+ and its selective fluorescence “turn-off” sensing towards 2,4,6-trinitrophenol (TNP) in the aggregated state. Photochem Photobiol Sci 18, 2717–2729 (2019). https://doi.org/10.1039/c9pp00226j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c9pp00226j

Navigation