Skip to main content
Log in

Tuning the fluorescence of calcium-discharged photoprotein obelin via mutating at the His22-Phe88-Trp92 triad – a QM/MM study†

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The fluorescence (FL) of calcium-discharged photoprotein (CaDP) can be altered by easily mutating CaDP without modifying coelenteramide (CLM), which is the decarboxylation product of coelenterazine in calcium-regulated photoprotein. The His22-Phe88-Trp92 triad (the ordering numbers of three amino acids are sorted by a crystal structure (PDB: 2F8P) of calcium-discharged obelin, i.e., CaDP-obelin) is closely related to CaDP-obelin FL, since it exists in close proximity to the 5-p-hydroxyphenyl of CLM. Therefore, it is important to thoroughly investigate how the mutations of this triad affect the emission color of CaDP-obelin FL. In this study, by mutating wild-type CaDP-obelin (WT) at the His22-Phe88-Trp92 triad, we theoretically constructed its nine mutants of separable FL colors. Through combined quantum mechanics and molecular mechanics (QM/MM) calculations and molecular dynamics (MD) simulations, the influence of the mutations of this triad on the CaDP-obelin FL was analyzed considering the H-bond effect and the charge effect. This study demonstrated that the mutations at the His22-Phe88-Trp92 triad redistribute the charges on the D–π-A molecule, CLM, change the charge transfer from the D to the (π + A>) moiety, and thereby alter the FL emission. Appending more negative charges on the phenolate moiety of CLM benefits the FL redshift.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. E. S. Vysotski and J. Lee, Ca2+-regulated photoproteins: structural insight into the bioluminescence mechanism, Acc. Chem. Res., 2004, 37, 405–415.

    Article  CAS  PubMed  Google Scholar 

  2. O. Shimomura, F. H. Johnson and Y. Saiga, Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea, J. Cell. Comp. Physiol., 1962, 59, 223–239.

    Article  CAS  PubMed  Google Scholar 

  3. O. Shimomura, F. H. Johnson and Y. Saiga, Extraction and properties of Halistaurin, a bioluminescent protein from the Hydromedusan Halistaura, J. Cell. Comp. Physiol., 1963, 62, 9–15.

    Article  CAS  PubMed  Google Scholar 

  4. L. D. Levine and W. W. Ward, Isolation and characterization of a photoprotein, “phialidin”, and a spectrally unique green-fluorescent protein from the bioluminescent jellyfish Phialidium gregarium, Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 1982, 72B, 77–85.

  5. A. K. Campbell, Extraction, partial purification and properties of obelin, the calcium activated luminescent protein from the Hydroid Obelia geniculata, Biochem. J., 1974, 143, 411–418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. E. S. Vysotski, V. S. Bondar and V. N. Letunov, Extraction and purification of obelin, the Ca2+-dependent photoprotein from the hydroid Obelia longissima, Biokhimiya, 1989, 54, 965–973.

    Google Scholar 

  7. M. Anctil and O. Shimomura, Mechanism of photoinactivation and re-activation in the bioluminescence system of the ctenophore Mnemiopsis, Biochem. J., 1984, 221, 269–272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. J. G. Morin and J. W. Hastings, Biochemistry of the bioluminescence of colonial hydroids and other coelenterates, J. Cell. Physiol., 1971, 77, 305–312.

    Article  CAS  PubMed  Google Scholar 

  9. W. W. Ward and H. H. Seliger, Extraction and purification of calcium-activated photoproteins from the ctenophores Mnemiopsis sp. and Beroe ovata, Biochemistry, 1974, 13, 1491–1499.

    Article  CAS  PubMed  Google Scholar 

  10. M. L. Powers, A. G. McDermott, N. C. Shaner and S. H. Haddock, Expression and characterization of the calcium-activated photoprotein from the ctenophore Bathocyroe fosteri: insights into light-sensitive photoproteins, Biochem. Biophys. Res. Commun., 2013, 431, 360–366.

    Article  CAS  PubMed  Google Scholar 

  11. L. P. Burakova, S. V. Markova, S. Golz, L. A. Frank and E. S. Vysotski, The isospecies of Ca2+-regulated photoprotein bolinopsin from Bolinopsis infundibulum, Luminescence, 2006, 21, 273–273.

    Google Scholar 

  12. J. F. Head, S. Inouye, K. Teranishi and O. Shimomura, The crystal structure of the photoprotein aequorin at 2.3 Å resolution, Nature, 2000, 405, 372–376.

    Article  CAS  PubMed  Google Scholar 

  13. Z.-J. Liu, E. S. Vysotski, L. Deng, J. Lee, J. Rose and B.-C. Wang, Atomic resolution structure of obelin: soaking with calcium enhances electron density of the second oxygen atom substituted at the C2-position of coelenterazine, Biochem. Biophys. Res. Commun., 2003, 311, 433–439.

    Article  CAS  PubMed  Google Scholar 

  14. L. P. Burakova, P. V. Natashin, S. V. Markova, E. V. Eremeeva, N. P. Malikova, C. Cheng, Z. J. Liu and E. S. Vysotski, Mitrocomin from the jellyfish Mitrocoma cellularia with deleted C-terminal tyrosine reveals a higher bioluminescence activity compared to wild type photoprotein, J. Photochem. Photobiol., B, 2016, 162, 286–297.

    Article  CAS  Google Scholar 

  15. M. S. Titushin, Y. Feng, G. A. Stepanyuk, Y. Li, S. V. Markova, S. Golz, B. C. Wang, J. Lee, J. Wang, E. S. Vysotski and Z. J. Liu, NMR-derived topology of a GFP-photoprotein energy transfer complex, J. Biol. Chem., 2010, 285, 40891–40900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. L. P. Burakova, G. A. Stepanyuk, E. V. Eremeeva and E. S. Vysotski, Role of certain amino acid residues of the coelenterazine-binding cavity in bioluminescence of lightsensitive Ca2+-regulated photoprotein berovin, Photochem. Photobiol. Sci., 2016, 15, 691–704.

    Article  CAS  PubMed  Google Scholar 

  17. E. S. Vysotski, S. V. Markova and L. A. Frank, Calcium-regulated photoproteins of marine coelenterates, Mol. Biol., 2006, 40, 355–367.

    Article  CAS  Google Scholar 

  18. Y. Zhao, Y. Shi, W. Zhao, X. Huang, D. Wang, N. Brown, J. Brand and J. Zhao, CcbP, a calcium-binding protein from Anabaena sp. PCC 7120, provides evidence that calcium ions regulate heterocyst differentiation, Proc. Natl. Acad. Sci. U. S. A., 2005, 102, 5744–5748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. S. Inouye, Blue fluorescent protein from the calcium-sensitive photoprotein aequorin is a heat resistant enzyme, catalyzing the oxidation of coelenterazine, FEBS Lett., 2004, 577, 105–110.

  20. L. A. Frank, Recombinant hybrid proteins as biospecific reporters for bioluminescent microassay, J. Sib. Fed. Univ. Biol., 2018, 11, 166–173.

  21. A. Bakayan, B. Domingo, C. F. Vaquero, N. Peyrieras and J. Llopis, Fluorescent protein-photoprotein fusions and their applications in calcium imaging, Photochem. Photobiol., 2017, 93, 448–465.

    Article  CAS  PubMed  Google Scholar 

  22. S. Inouye and Y. Sahara-Miura, A fusion protein of the synthetic IgG-binding domain and aequorin: Expression and purification from, E. coli cells and its application, Protein Expression Purif., 2017, 137, 58–63.

    Article  CAS  Google Scholar 

  23. S. Sharifian, A. Homaei, R. Hemmati, R. B. Luwor and K. Khajeh, The emerging use of bioluminescence in medical research, Biomed. Pharmacother., 2018, 101, 74–86.

    Article  CAS  PubMed  Google Scholar 

  24. V. V. Krasitskaya, A. N. Kudryavtsev, O. Shimomura and L. A. Frank, Obelin mutants as reporters in bioluminescent dual-analyte binding assay, Anal. Methods, 2013, 5, 636–640.

    Article  CAS  Google Scholar 

  25. G. V. Aglyamova, M. E. Hunt, C. K. Modi and M. V. Matz, Multi-colored homologs of the green fluorescent protein from hydromedusa Obelia sp, Photochem. Photobiol. Sci., 2011, 10, 1303–1309.

    Article  CAS  PubMed  Google Scholar 

  26. L. A. Frank, V. V. Borisova, S. V. Markova, N. P. Malikova, G. A. Stepanyuk and E. S. Vysotski, Violet and greenish photoprotein obelin mutants for reporter applications in dual-color assay, Anal. Bioanal. Chem., 2008, 391, 2891–2896.

    Article  CAS  PubMed  Google Scholar 

  27. R. R. Alieva, N. V. Belogurova, A. S. Petrova and N. S. Kudryasheva, Fluorescence properties of Ca2+-independent discharged obelin and its application prospects, Anal. Bioanal. Chem., 2013, 405, 3351–3358.

    Article  CAS  PubMed  Google Scholar 

  28. N. Komatsu, K. Terai, A. Imanishi, Y. Kamioka, K. Sumiyama, T. Jin, Y. Okada, T. Nagai and M. Matsuda, A platform of BRET-FRET hybrid biosensors for optogenetics, chemical screening, and in vivo imaging, Sci. Rep., 2018, 8, 8984.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Y. Nakajima, T. Kimura, K. Sugata, T. Enomoto, A. Asakawa, H. Kubota, M. Ikeda and Y. Ohmiya, Multicolor luciferase assay system: One-step monitoring of multiple gene expressions with a single substrate, BioTechniques, 2005, 38, 891–894.

    Article  CAS  PubMed  Google Scholar 

  30. R. Ogura, N. Matsuo, N. Wako, T. Tanaka, S. Ono and K. Hiratsuka, Multi-color luciferases as reporters for monitoring transient gene expression in higher plants, Plant Biotechnol., 2005, 22, 151–155.

    Article  CAS  Google Scholar 

  31. C. Wu, C. Suzuki-Ogoh and Y. Ohmiya, Dual-reporter assay using two secreted luciferase genes, BioTechniques, 2007, 42, 290–292.

    Article  CAS  PubMed  Google Scholar 

  32. Y. Nakajima and Y. Ohmiya, Bioluminescence assays: Multicolor luciferase assay, secreted luciferase assay and imaging luciferase assay, Expert Opin. Drug Discovery, 2010, 5, 835–849.

    Article  CAS  Google Scholar 

  33. R. R. Alieva, N. V. Belogurova, A. S. Petrova and N. S. Kudryasheva, Effects of alcohols on fluorescence intensity and color of a discharged-obelin-based biomarker, Anal. Bioanal. Chem., 2014, 406, 2965–2974.

    Article  CAS  PubMed  Google Scholar 

  34. B. van Oort, E. V. Eremeeva, R. B. M. Koehorst, S. P. Laptenok, H. van Amerongen, W. J. H. van Berkel, N. P. Malikova, S. V. Markova, E. S. Vysotski, A. J. W. J. Visser and J. Lee, Picosecond fluorescence relaxation spectroscopy of the calcium-discharged photoproteins aequorin and obelin, Biochemistry, 2009, 48, 10486–10491.

    Article  PubMed  CAS  Google Scholar 

  35. L. Deng, S. V. Markova, E. S. Vysotski, Z. J. Liu, J. Lee, J. Rose and B. C. Wang, Preparation and X-ray crystallographica analysis of the Ca2+-discharged photoprotein obelin, Acta Crystallogr., Sect. D: Biol. Crystallogr., 2004, 60, 512–514.

    Article  CAS  Google Scholar 

  36. A. Petrova, N. Belogurova, R. Alieva and N. Kudryasheva, Effect of DMSO on fluorescence properties of Ca2+-discharged photoprotein obelin, Luminescence, 2014, 29, 40–40.

    Google Scholar 

  37. O. Shimomura and F. H. Johnson, Calcium binding, quantum yield, and emitting molecule in aequorin bioluminescence, Nature, 1970, 227, 1356–1357.

    Article  CAS  PubMed  Google Scholar 

  38. O. Shimomura and F. H. Johnson, Regeneration of the photoprotein aequorin, Nature, 1975, 256, 236–238.

    Article  CAS  PubMed  Google Scholar 

  39. N. V. Belogurova and N. S. Kudryasheva, Discharged photoprotein obelin: fluorescence peculiarities, J. Photochem. Photobiol., B, 2010, 101, 103–108.

    Article  CAS  Google Scholar 

  40. Z.-J. Liu, G. A. Stepanyuk, E. S. Vysotski, J. Lee, S. V. Markova, N. P. Malikova and B.-C. Wang, Crystal structure of obelin after Ca2+-triggered bioluminescence suggests neutral coelenteramide as the primary excited state, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 2570–2575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. E. V. Eremeeva and E. S. Vysotski, Exploring bioluminescence function of the Ca2+-regulated photoproteins with site-directed mutagenesis, Photochem. Photobiol., 2019, 95, 8–23.

    Article  CAS  PubMed  Google Scholar 

  42. E. V. Eremeeva, S. V. Markova, L. A. Frank, A. J. Visser, W. J. van Berkel and E. S. Vysotski, Bioluminescent and spectroscopic properties of His-Trp-Tyr triad mutants of obelin and aequorin, Photochem. Photobiol. Sci., 2013, 12, 1016–1024.

    Article  CAS  PubMed  Google Scholar 

  43. Z.-J. Liu, E. S. Vysotski, C.-J. Chen, J. P. Rose, J. Lee and B.-C. Wang, Structure of the Ca2+-regulated photoprotein obelin at 1.7 angstrom resolution determined directly from its sulfur substructure, Protein Sci., 2000, 9, 2085–2093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. L. Yue, QM/MM investigations on the bioluminescent decomposition of coelenterazine dioxetanone in Obelin, Chem. Res. Chin. Univ., 2018, 34, 758–766.

  45. L. Yue, Y.-J. Liu and W.-H. Fang, Mechanistic insight into the chemiluminescent decomposition of firefly dioxetanone, J. Am. Chem. Soc., 2012, 134, 11632–11639.

    Article  CAS  PubMed  Google Scholar 

  46. B.-W. Ding and Y.-J. Liu, Bioluminescence of firefly squid via mechanism of single Electron-transfer oxygenation and Charge-transfer-induced luminescence, J. Am. Chem. Soc., 2017, 139, 1106–1119.

    Article  CAS  PubMed  Google Scholar 

  47. N. P. Malikova, G. A. Stepanyuk, L. A. Frank, S. V. Markova, E. S. Vysotski and J. Lee, Spectral tuning of obelin bioluminescence by mutations of Trp92, FEBS Lett., 2003, 554, 184–188.

    Article  CAS  PubMed  Google Scholar 

  48. G. A. Stepanyuk, S. Golz, S. V. Markova, L. A. Frank, J. Lee and E. S. Vysotski, Interchange of aequorin and obelin bioluminescence color is determined by substitution of one active site residue of each photoprotein, FEBS Lett., 2005, 579, 1008–1014.

    Article  CAS  PubMed  Google Scholar 

  49. S. V. Markova, E. S. Vysotski, J. R. Blinks, L. P. Burakova, B. C. Wang and J. Lee, Obelin from the bioluminescent marine Hydroid Obelia geniculata: Cloning, Expression, and comparison of some properties with those of other Ca2+-regulated photoproteins, Biochemistry, 2002, 41, 2227–2236.

    Article  CAS  PubMed  Google Scholar 

  50. N. V. Belogurova, N. S. Kudryasheva, R. R. Alieva and A. G. Sizykh, Spectral components of bioluminescence of aequorin and obelin, J. Photochem. Photobiol., B, 2008, 92, 117–122.

    Article  CAS  Google Scholar 

  51. S. Chen, I. Navizet, R. Lindh, Y. Liu and N. Ferré, Hybrid QM/MM simulations of the obelin bioluminescence and fluorescence reveal an unexpected light emitter, J. Phys. Chem. B, 2014, 118, 2896–2903.

    Article  CAS  PubMed  Google Scholar 

  52. S.-F. Chen, N. Ferré and Y.-J. Liu, QM/MM study on the light emitters of aequorin chemiluminescence, bioluminescence, and fluorescence: a general understanding of the bioluminescence of several marine organisms, Chem. –, Eur. J., 2013, 19, 8466–8472.

    Article  CAS  Google Scholar 

  53. R. R. Alieva, F. N. Tomilin, A. A. Kuzubov, S. G. Ovchinnikov and N. S. Kudryasheva, Ultraviolet fluorescence of coelenteramide and coelenteramide-containing fluorescent proteins. Experimental and theoretical study, J. Photochem. Photobiol., B, 2016, 162, 318–323.

    Article  CAS  Google Scholar 

  54. P. V. Natashin, S. V. Markova, J. Lee, E. S. Vysotski and Z.-J. Liu, Crystal structures of the F88Y obelin mutant before and after bioluminescence provide molecular insight into spectral tuning among hydromedusan photoproteins, FEBS J., 2014, 281, 1432–1445.

    Article  CAS  PubMed  Google Scholar 

  55. Z. S. Li, L. Y. Zou, C. G. Min and A. M. Ren, The effect of micro-environment on luminescence of aequorin: the role of amino acids and explicit water molecules on spectroscopic properties of coelenteramide, J. Photochem. Photobiol., B, 2013, 127, 94–99.

    Article  CAS  Google Scholar 

  56. K. Mori, S. Maki, H. Niwa, H. Ikeda and T. Hirano, Real light emitter in the bioluminescence of the calcium-activated photoproteins aequorin and obelin: light emission from the singlet-excited state of coelenteramide phenolate anion in a contact ion pair, Tetrahedron, 2006, 62, 6272–6288.

    Article  CAS  Google Scholar 

  57. E. S. Vysotski, Z. J. Liu, S. V. Markova, J. R. Blinks, L. Deng, L. A. Frank, M. Herko, N. P. Malikova, J. P. Rose, B. C. Wang and J. Lee, Violet bioluminescence and fast kinetics from W92F obelin: Structure-based proposals for the bioluminescence triggering and the identification of the emitting species, Biochemistry, 2003, 42, 6013–6024.

    Article  CAS  PubMed  Google Scholar 

  58. O. Shimomura and K. Teranishi, Light-emitters involved in the luminescence of coelenterazine, Luminescence, 2000, 15, 51–58.

    Article  CAS  PubMed  Google Scholar 

  59. L. Deng, E. S. Vysotski, Z. J. Liu, S. V. Markova, N. P. Malikova, J. Lee, J. Rose and B. C. Wang, Structural basis for the emission of violet bioluminescence from a W92F obelin mutant, FEBS Lett., 2001, 506, 281–285.

    Article  CAS  PubMed  Google Scholar 

  60. E. Runge and E. K. U. Gross, Density-functional theory for time-dependent systems, Phys. Rev. Lett., 1984, 52, 997–1000.

    Article  CAS  Google Scholar 

  61. T. Yanai, D. P. Tew and N. C. Handy, A new hybrid exchange–correlation functional using the Coulombattenuating method (CAM-B3LYP), Chem. Phys. Lett., 2004, 393, 51–57.

    Article  CAS  Google Scholar 

  62. P. C. Hariharan and J. A. Pople, The influence of polarization functions on molecular orbital hydrogenation energies, Theor. Chim. Acta, 1973, 28, 213–222.

    Article  CAS  Google Scholar 

  63. W. J. Hehre, R. Ditchfield and J. A. Pople, Self—consistent molecular orbital methods. XII. Further extensions of Gaussian—type basis sets for use in molecular orbital studies of organic molecules, J. Chem. Phys., 1972, 56, 2257–2261.

    Article  CAS  Google Scholar 

  64. J. M. Wang, P. Cieplak and P. A. Kollman, How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules?, J. Comput. Chem., 2000, 21, 1049–1074.

    Article  CAS  Google Scholar 

  65. A. E. Reed, R. B. Weinstock and F. Weinhold, Natural population analysis, J. Chem. Phys., 1985, 83, 735–746.

    Article  CAS  Google Scholar 

  66. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. Peralta, J. E. Xxx, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, 2009.

  67. J. W. Ponder, Tinker-SoftwareTools for Molecular Design, Version 6.3, Washington University School of Medicine, St. Louis, MO(USA), 2014. The most updated version for the Tinker program can be obtained from the Internet at: http://dasher.wustl.edu/tinker.

  68. N. Ferré and J. G. Ángyán, Approximate electrostatic interaction operator for QM/MM calculations, Chem. Phys. Lett., 2002, 356, 331–339.

    Article  Google Scholar 

  69. F. Melaccio, M. Olivucci, R. Lindh and N. Ferré, Unique QM/MM potential energy surface exploration using microiterations, Int. J. Quantum Chem., 2011, 111, 3339–3346.

    Article  CAS  Google Scholar 

  70. F. Collette, T. Renger, F. Müh and M. Schmidt am Busch, Red/Green color tuning of visual rhodopsins: Electrostatic theory provides a quantitative explanation, J. Phys. Chem. B, 2018, 122, 4828–4837.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-Jun Liu.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c9pp00191c

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, M., Ding, BW. & Liu, YJ. Tuning the fluorescence of calcium-discharged photoprotein obelin via mutating at the His22-Phe88-Trp92 triad – a QM/MM study†. Photochem Photobiol Sci 18, 1823–1832 (2019). https://doi.org/10.1039/c9pp00191c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c9pp00191c

Navigation