Skip to main content
Log in

VUV-photolysis of aqueous solutions of hydroxylamine and nitric oxide. Effect of organic matter: phenol

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

VUV-irradiation of aqueous solutions containing hydroxylamine (NH2OH) in its acid form (NH3OH+) and phenol (C6H5OH) results in the simultaneous mineralization of the organic substrate and the almost quantitative reduction of NH3OH+ to ammonium ions (NH4+). Irradiation of aqueous solutions of NH3OH+ in the absence of organic substrates showed the formation of nitrate (NO3) and nitrite (NO2) and minor quantities of NH4+. In line with these experiments, VUV-irradiation of aqueous solutions of nitrogen monoxide (NO) yields NH4+ only when C6H5OH is simultaneously mineralized. A possible reaction mechanism is discussed, where reactions of NO and NH3OH+ with hydrogen atoms (H), hydroxyl radicals (HO) and hydrated electrons (eaq), all generated by the VUV-photochemically initiated homolysis of water, are of great importance to the observed results. In the presence of phenol, competition between phenol and either NO or NH3OH+ for these reactive intermediates in the primary volume of reactions strongly determines the oxidation state and nature of the N-containing products. C-Centered radicals and intermediate products of reactions may also have an important effect on the overall mechanism. The present results are discussed in relation to the actual state of knowledge presented in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. G. Gonzalez, E. Oliveros, M. Wörner and A. M. Braun, Vacuum-ultraviolet photolysis of aqueous reaction systems, J. Photochem. Photobiol., C, 2004, 5, 225–246.

    Article  CAS  Google Scholar 

  2. O. Legrini, E. Oliveros and A. M. Braun, Photochemical processes for water treatment, Chem. Rev., 1993, 93, 671–698.

    Article  CAS  Google Scholar 

  3. S. Robl, M. Wörner, D. Maier and A. M. Braun, Formation of hydrogen peroxide by VUV-photolysis of water and aqueous solutions with methanol, Photochem. Photobiol. Sci., 2012, 11, 1041–1050.

    Article  CAS  Google Scholar 

  4. G. V. Buxton, C. L. Greenstock, W. P. Helman, A. B. Ross and W. Tsang, Critical Review of Rate Constants for Reactions of Hydrated Electrons, Hydrogen Atoms and Hydroxyl Radicals (.OH/.O-) in Aqueous Solution, J. Phys. Chem. Ref. Data, 1988, 17, 513.

    Article  CAS  Google Scholar 

  5. Farhataziz and A. B. Ross, Selected specific rates of reactions of transients from water in aqueous solutions. III Hydroxyl radical and per hydroxyl radical and their radical ions, Nat. Stand. Ref. Data Ser.,Nat. Bur. Stand., 1977, 59, 122 pages.

  6. M. Anbar, Farhataziz and A. B. Ross, Selected specific rates of transients from water in aqueous solution. II. Hydrogen atom, Nat. Stand. Ref. Data Ser.,Nat. Bur. Stand., 1975, 51, 56 pages.

  7. M. C. Gonzalez, A. M. Braun, A. B. Prevot and E. Pelizzetti, Vacuum-ultraviolet (VUV) photolysis of water: Mineralization of atrazine, Chemosphere, 1994, 28, 2121–2127.

    Article  CAS  Google Scholar 

  8. G. Heit and A. M. Braun, VUV-photolysis of aqueous systems: Spatial differentiation between volumes of primary and secondary reactions, Water Sci. Technol., 1997, 35, 25–30.

    Article  CAS  Google Scholar 

  9. M. C. Gonzalez and A. M. Braun, VUV photolysis of aqueous solutions of nitrate and nitrite, Res. Chem. Intermed., 1995, 21, 837–859.

    Article  CAS  Google Scholar 

  10. M. C. Gonzalez and A. M. Braun, Vacuum UV photolysis of aqueous solutions of nitrate. Effect of organic matter: II. Methanol, J. Photochem. Photobiol., A, 1996, 67–72.

    Google Scholar 

  11. M. C. Gonzalez and A. M. Braun, Vacuum-UV photolysis of aqueous solutions of nitrate: Effect of organic matter: I. Phenol, J. Photochem. Photobiol., A, 1996, 7–19.

    Google Scholar 

  12. M. D. Bartberger, W. Liu, E. Ford, K. M. Miranda, C. Switzer, J. M. Fukuto, P. J. Farmer, D. A. Wink and K. N. Houk, The reduction potential of nitric oxide (NO) and its importance to NO biochemistry, Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 10958–10963.

    Article  CAS  Google Scholar 

  13. A. S. Dutton, J. M. Fukuto and K. N. Houk, Theoretical reduction potentials for nitrogen oxides from CBS-QB3 energetics and (C)PCM solvation calculations, Inorg. Chem., 2005, 44, 4024–4028.

    Article  CAS  Google Scholar 

  14. P. Wardman, Reduction Potentials of One-Electron Couples Involving Free Radicals in Aqueous Solution., J. Phys. Chem. Ref. Data, 1996, 18, 1637–1711.

    Article  Google Scholar 

  15. H. Ischiropoulos, J. Nelson, D. Duran and A. Al-Mehdi, Reactions of Nitric Oxide and Peroxinitrite with Organic Molecules and Ferrihorseradish Peroxidase: Interference with the Determination of Hydrogen Peroxide, Free Radicals Biol. Med., 1996, 20, 373–381.

    Article  CAS  Google Scholar 

  16. M. N. Hughes, Chemistry of Nitric Oxide and Related Species, Methods Enzymol., 2008, 436, 3–19.

    Article  CAS  Google Scholar 

  17. J. R. Lancaster, Nitric oxide: a brief overview of chemical and physical properties relevant to therapeutic applications, Future Sci. OA, 2015, 1, FSO59.

  18. T. Itoh, K. Nagata, M. Miyazaki and A. Ohsawa, Reaction of Nitric Oxide with Amines, J. Org. Chem., 1997, 62, 3582–3585.

    Article  CAS  Google Scholar 

  19. A. A. Noronha-Dutra, M. M. Epperlein and N. Woolf, Reaction of nitric oxide with hydrogen peroxide to produce potentially cytotoxic singlet oxygen as a model for nitric oxide-mediated killing, FEBS Lett., 1993, 321, 59–62.

    Article  CAS  Google Scholar 

  20. B. Gellert and U. Kogelschatz, Generation of excimer emission in dielectric barrier discharges, Appl. Phys. B, 1991, 52, 14–21.

    Article  Google Scholar 

  21. G. Heit, A. Neuner, P. Y. Saugy and A. M. Braun, Vacuum-UV (172 nm) actinometry. The quantum yield of the photolysis of water, J. Phys. Chem. A, 1998, 102, 5551–5561.

    Article  CAS  Google Scholar 

  22. H. H. Awad and D. M. Stanbury, Autoxidation of NO in aqueous solution, Int. J. Chem. Kinet., 1993, 25, 375–381.

    Article  CAS  Google Scholar 

  23. A. F. Holleman, E. Wiberg and N. Wiberg, Inorganic Chemistry, Academic Press, Berlin-New York, 2001.

    Google Scholar 

  24. H. D. Johnson, W. J. Cooper, S. P. Mezyk and D. M. Bartels, Free radical reactions of monochloramine and hydroxylamine in aqueous solution, Radiat. Phys. Chem., 2002, 65, 317–326.

    Article  CAS  Google Scholar 

  25. M. Simic and E. Hayon, Intermediates Produced from the One-Electron Oxidation and Reduction of Hydroxylamines. Acid-Base Properties of the Amino, Hydroxyamino, and Methoxyamino Radicals, J. Am. Chem. Soc., 1971, 17, 5982–5986.

    Article  Google Scholar 

  26. L. Chen, X. Li, J. Zhang, J. Fang, Y. Huang, P. Wang and J. Ma, Production of Hydroxyl Radical via the Activation of Hydrogen Peroxide by Hydroxylamine, Environ. Sci. Technol., 2015, 49, 10373–10379.

    Article  CAS  Google Scholar 

  27. G. Heit and A. Braun, Spatial resolution of oxygen measurements during VUV-photolysis of aqueous systems, J. Inf. Rec., 1996, 22, 543–546.

    CAS  Google Scholar 

  28. S. Robl, M. Wörner, D. Maier and A. M. Braun, Formation of hydrogen peroxide by VUV-photolysis of water and aqueous solutions with methanol, Photochem. Photobiol. Sci., 2012, 11, 1041–1050.

    Article  CAS  Google Scholar 

  29. W. Bors, E. Lengfelder and M. Saran, Oxidation of hydroxylamine to nitrite as an assay for the combined presence of superoxide anions and hydroxyl radicals, Biochem. Biophys. Res. Commun., 1977, 75, 973–979.

    Article  CAS  Google Scholar 

  30. J. Lind and G. Merényi, Kinetic and thermodynamic properties of the aminoxyl (NH2O) radical, J. Phys. Chem. A, 2006, 110, 192–197.

    Article  CAS  Google Scholar 

  31. R. Smulik, D. Debski, J. Zielonka, B. Michałowski, J. Adamus, A. Marcinek, B. Kalyamnaraman and A. Sikora, Nitroxyl (HNO) Reacts with Molecular Oxygen and Forms Peroxynitrite at Physiological pH. Biological Implications, J. Biol. Chem., 2014, 289, 35570–35581.

    Article  CAS  Google Scholar 

  32. N. Paolocci, M. I. Jackson, B. E. Lopez, C. G. Tocchetti, A. David, A. Hobbs and J. M. Fukuto, The Pharmacology of Nitroxyl (HNO) and Its Therapeutic Potential : Not Just the Janus Face of NO, Pharmacol. Ther., 2007, 113, 442–458.

    Article  CAS  Google Scholar 

  33. K. D. Asmus, S. Nigam and R. L. Willson, Kinetics of nitroxyl radical reactions a pulse-radiolysis conductivity study, Int. J. Radiat. Biol., 1976, 29, 211–219.

    CAS  Google Scholar 

  34. P. Neta, R. E. Huie, A. B. Ross and A. B. Ross, Rate Constants for Reactions of Inorganic Radicals in Aqueous Solution, J. Phys. Chem. Ref. Data, 1988, 17, 1027–1284.

    Article  CAS  Google Scholar 

  35. J. Bonin, I. Janik, D. Janik and D. M. Bartels, Reaction of the hydroxyl radical with phenol in water up to supercritical conditions, J. Phys. Chem. A, 2007, 111, 1869–1878.

    Article  CAS  Google Scholar 

  36. O. Krechkivska, C. M. Wilcox, T. P. Troy, K. Nauta, B. Chan, R. Jacob, S. A. Reid, L. Radom, T. W. Schmidt and S. H. Kable, Hydrogen-atom attack on phenol and toluene is ortho-directed, Phys. Chem. Chem. Phys., 2016, 18, 8625–8636.

    Article  CAS  Google Scholar 

  37. A. B. Ross and P. Neta, Rate Constants for Reactions of Aliphatic-Centered Radicals in Aqueous Solution, Nat. Stand. Ref. Data Ser.,Nat. Bur. Stand., 1982, 70, 103 pages.

  38. S. V. Lymar, V. Shafirovich and G. A. Poskrebyshev, Oneelectron reduction of aqueous nitric oxide: A mechanistic revision, Inorg. Chem., 2005, 44, 5212–5221.

    Article  CAS  Google Scholar 

  39. S. A. Suarez, N. I. Neuman, M. Muñoz, L. Álvarez, D. E. Bikiel, C. D. Brondino, I. Ivanović-Burmazović, J. L. Miljkovic, M. R. Filipovic, M. A. Martí and F. Doctorovich, Nitric Oxide Is Reduced to HNO by Proton-Coupled Nucleophilic Attack by Ascorbate, Tyrosine, and Other Alcohols. A New Route to HNO in Biological Media?, J. Am. Chem. Soc., 2015, 137, 4720–4727.

    Article  CAS  Google Scholar 

  40. C. H. Switzer, W. Flores-Santana, D. Mancardi, S. Donzelli, D. Basudhar, L. A. Ridnour, K. M. Miranda, J. M. Fukuto, N. Paolocci and D. A. Wink, The emergence of nitroxyl (HNO) as a pharmacological agent, Biochim. Biophys. Acta, Bioenerg., 2009, 1787, 835–840.

    Article  CAS  Google Scholar 

  41. R. R. Giri, H. Ozaki, X. Guo, R. Takanami and S. Taniguchi, Significance of water quality and radiation wavelength for UV photolysis of PhCs in simulated mixed solutions, Cent. Eur. J. Chem., 2014, 12, 659–671.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mónica C. Gonzalez.

Additional information

Dedicated in memory of Professor Ugo Mazzucato (Università degli Studi di Perugia, Italy), 1929–2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzalez, M.C., Braun, A.M. VUV-photolysis of aqueous solutions of hydroxylamine and nitric oxide. Effect of organic matter: phenol. Photochem Photobiol Sci 18, 2240–2247 (2019). https://doi.org/10.1039/c9pp00143c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c9pp00143c

Navigation