Skip to main content
Log in

On the assessment of incorporation of CNT–TiO2 core–shell structures into nanoparticle TiO2 photoanodes in dye-sensitized solar cells

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Herein, we report dye-sensitized solar cells (DSCs) based on conventional nanocrystalline TiO2 photoanodes decorated with one-dimensional (1D) CNT–TiO2 core–shell structures (CTH). The core–shell nanotubes are synthesized by a simple sol–gel template-assisted method via in situ deposition of TiO2 on the surface of non-covalently functionalized CNTs. The core–shell nanotubes are well characterized by various techniques. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) images show that formation of the TiO2 shell on the surface of the CNT core follows a layer or Frank–van der Merwe growth mode, resulting in a highly uniform interface with excellent charge transfer from the TiO2 conduction band into the CNTs. The thickness and crystal structure of the TiO2 shell can be tailored by controlling the processing parameters. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy verify that CNTs have no surface defects and are well preserved using the employed method and the subsequent heat treatment in air, respectively. UV-vis spectroscopy and photoluminescence spectroscopy reveal an extension to visible regions with an increase in overall intensity and a significant reduction in charge recombination due to a shift of the Fermi level toward positive potentials. We find an increase by up to 37% in the DSC device’s power conversion efficiency by incorporating the CNT–TiO2 core–shell nanotubes into the nanoparticle TiO2 photoanode due to the charge recombination reduction and electron injection enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. ORegan and M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 1991, 353, 737–740.

    Article  CAS  Google Scholar 

  2. H. Asgari Moghaddam, S. Jafari and M. R. Mohammadi, Enhanced efficiency of over 10% in dye-sensitized solar cells through C and N single- and co-doped TiO2 singlelayer electrode, New J. Chem., 2017, 41, 9453–9460.

    Article  CAS  Google Scholar 

  3. Md. K. Nazeeruddin, E. Baranoff and M. Gratzel, Dye-sensitized solar cells: A brief overview, Sol. Energy, 2011, 85, 1172–1178.

    Article  CAS  Google Scholar 

  4. A. M. Bakhshayesh and M. R. Mohammadi, Development of nanostructured porous TiO2 thick film with uniform spherical particles by a new polymeric gel process for dyesensitized solar cell applications, Electrochim. Acta, 2013, 89, 90–97.

    Article  CAS  Google Scholar 

  5. L. M. Peter, Characterization and modeling of dye-sensitized solar cells, J. Phys. Chem. C, 2007, 111, 6601–6612.

  6. M. Mojaddami, M. R. Mohammadi and H. R. Madaah Hosseini, Improved efficiency of dye-sensitized solar cells based on a single layer deposition of skein-like TiO2 nanotubes, J. Am. Ceram. Soc., 2014, 97, 2873–2879.

    Article  CAS  Google Scholar 

  7. S. S. Mali, S. K. Desai, D. S. Dalavi, C. A. Betty, P. N. Bhosale and P. S. Patil, CdS-sensitized TiO2 nanocorals: hydrothermal synthesis, characterization, application, Photochem. Photobiol. Sci., 2011, 10, 1652–1658.

    Article  CAS  PubMed  Google Scholar 

  8. A. M. Bakhshayesh and M. R. Mohammadi, The improvement of electron transport rate of TiO2 dye-sensitized solar cells using mixed nanostructures: The influences of nanowire to nanoparticle weight ratio and phase composition, Ceram. Int., 2013, 39, 7343–7353.

    Article  CAS  Google Scholar 

  9. M. Y. Yen, M. C. Hsiao, S. H. Liao, P. Liu, H. M. Tsai, C. M. Ma, N. W. Pu and M. D. Ger, Preparation of graphene/multi-walled carbon nanotube hybrid and its use as photoanodes of dye-sensitized solar cells, Carbon, 2011, 49, 3597–3606.

    Article  CAS  Google Scholar 

  10. E. Nouri, Y. L. Wang, Q. Chen, J. J. Xu, G. Paterakis, V. Dracopoulos, Z. X. Xu, D. Tasis, M. R. Mohammadi and P. Lianos, Introduction of Graphene Oxide as Buffer Layer in Perovskite Solar Cells and the Promotion of Soluble n-Butyl-substituted Copper Phthalocyanine as Efficient Hole Transporting Material, Electrochim. Acta, 2017, 233, 36–43.

    Article  CAS  Google Scholar 

  11. Q. Chang, Z. Ma, Y. Lin, Y. Xiao, L. Huang, S. Xu and W. Shia, In situ grown hybrid nanocarbon composite for dye sensitized solar cells, Electrochim. Acta, 2015, 166, 134–141.

    Article  CAS  Google Scholar 

  12. N. T. Hieu, S. J. Baik, O. H. Chung and J. S. Park, Fabrication and characterization of electrospun carbon nanotubes/titanium dioxide nanofibers used in anodes of dye-sensitized solar cells, Synth. Met., 2014, 193, 125–131.

    Article  CAS  Google Scholar 

  13. K. Woan, G. Pyrgiotakis and W. Sigmund, Photocatalytic Carbon-Nanotube–TiO2 Composites, Adv. Mater., 2009, 21, 2233–2239.

    Article  CAS  Google Scholar 

  14. M. R. Hoffmann, S. T. Martin, W. Y. Choi and D. W. Bahnemann, Environmental Applications of Semiconductor Photocatalysis, Chem. Preview, 1995, 95, 69–96.

    CAS  Google Scholar 

  15. W. D. Wang, P. Serp, P. Kalck and J. L. Faria, Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol–gel method, J. Mol. Catal. A: Chem., 2005, 235, 194–199.

    Article  CAS  Google Scholar 

  16. J. Yu, J. Fan and B. Cheng, Dye-sensitized solar cells based on anatase TiO2 hollow spheres/carbon nanotube composite films, J. Power Sources, 2011, 196, 7891–7898.

    Article  CAS  Google Scholar 

  17. J. Chen, B. Li, J. Zheng, J. Zhao and Z. Zhu, Role of Carbon Nanotubes in Dye-Sensitized TiO2-Based Solar Cells, J. Phys. Chem. C, 2012, 1162, 814848–814856.

    Google Scholar 

  18. M. Barberio, D. R. Grosso, A. Imbrogno and F. Xu, Preparation and photovoltaic properties of layered TiO2/carbon nanotube/TiO2 photoanodes for dye-sensitized solar cells, Superlattices Microstruct., 2016, 91, 158–164.

    Article  CAS  Google Scholar 

  19. S. Sun, L. Gao and Y. Liu, Optimization of the cutting process of multi-wall carbon nanotubes for enhanced dyesensitized solar cells, Thin Solid Films, 2011, 519, 2273–2279.

    Article  CAS  Google Scholar 

  20. K.-M. Lee, C.-W. Hu, H.-W. Chen and K.-C. Ho, Incorporating carbon nanotube in a low-temperature fabrication process for dye-sensitized TiO2 solar cells, Sol. Energy Mater. Sol. Cells, 2008, 92, 1628–1633.

    Article  CAS  Google Scholar 

  21. R. Verdejo, S. Lamoriniere, B. Cottam, A. Bismarck and M. Shaffer, Removal of oxidation debris from multi-walled carbon nanotubes, Chem. Commun., 2007, 5, 513–515.

    Article  Google Scholar 

  22. Z. Luo, A. Oki, L. Carson, L. Adams, G. Neelgund, N. Soboyejo, G. Regisford, M. Stewart, K. Hibbert, G. Beharie, C. K. Brown and P. Traisawatwong, Thermal stability of functionalized carbon nanotubes studied by, in situ transmission electron microscopy, Chem. Phys. Lett., 2011, 513, 88–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. G. De Filpo, F. P. Nicoletta, L. Ciliberti, P. Formoso and G. Chidichimo, Non-covalent functionalisation of single wall carbon nanotubes for efficient dye-sensitised solar cells, J. Power Sources, 2015, 274, 274–279.

    Article  CAS  Google Scholar 

  24. M. Barberio, V. Pingitore, P. Barone, M. Davoli, F. Stranges, F. Xua and A. Bonanno, Synthesis of carbon nanotube/TiO2 composites by titanium evaporation in ultra high vacuum ambient, Microelectron. Eng., 2013, 108, 213–217.

    Article  CAS  Google Scholar 

  25. K. M. Lee, C. W. Hu, H. W. Chen and K. C. Ho, Incorporating carbon nanotube in a low-temperature fabrication process for dye-sensitized TiO2 solar cells, Sol. Energy Mater. Sol. Cells, 2008, 92, 1628–1633.

    Article  CAS  Google Scholar 

  26. N. Massihi, M. R. Mohammadi, A. M. Bakhshayesh and M. Abdi-Jalebi, Controlling electron injection and electron transport of dye-sensitized solar cells aided by incorporating CNTs into a Cr-doped TiO2 photoanode, Electrochim. Acta, 2013, 111, 921–929.

    Article  CAS  Google Scholar 

  27. A. M. Bakhshayesh, M. R. Mohammadi, N. Massihi and M. H. Akhlaghi, Improved electron transportation of dyesensitized solar cells using uniform mixed CNTs–TiO2 photoanode prepared by a new polymeric gel process, J. Nanopart. Res., 2013, 15, 1961–1970.

    Article  Google Scholar 

  28. M. Krissanasaeranee, S. Wongkasemjit, A. K. Cheetham and D. Eder, Complex carbon nanotube-inorganic hybrid materials as next-generation photocatalysts, Chem. Phys. Lett., 2010, 496, 133–138.

    Article  CAS  Google Scholar 

  29. D. Eder and A. H. Windle, Morphology control of CNT-TiO2 hybrid materials and rutile nanotubes, J. Mater. Chem., 2008, 18, 2036–2043.

    Article  CAS  Google Scholar 

  30. M. R. Mohammadi, D. J. Fray and A. Mohammadi, Sol-Gel Nanostructured Titanium Dioxide: Controlling the Crystal Structure, Crystallite Size, Phase Transformation, Packing and Ordering, Microporous Mesoporous Mater., 2008, 112, 392–402.

    Article  CAS  Google Scholar 

  31. M. R. Mohammadi, Method for preparing titania pastes for use in dye-sensitized solar cells, US Patent 8906711, 2014.

  32. E. T. Thostensona, Z. Renb and T. W. Choua, Advances in the science and technology of carbon nanotubes and their composites: a review, Compos. Sci. Technol., 2001, 61, 1899–1912.

    Article  Google Scholar 

  33. V. Augugliaro, V. Loddo, M. José López-Muñoz, C. Márquez-Álvarez, G. Palmisano, L. Palmisano and S. Yurdakal, Home-prepared anatase, rutile, and brookite TiO2 for selective photocatalytic oxidation of 4-methoxybenzyl alcohol in water: reactivity and ATR-FTIR study, Photochem. Photobiol. Sci., 2009, 8, 663–669.

    Article  CAS  PubMed  Google Scholar 

  34. T. S. Natarajan, J. Y. Lee, H. C. Bajaj, W.-K. Jo and R. J. Tayade, Synthesis of multiwall carbon nanotubes/TiO2 nanotube composites with enhanced photocatalytic decomposition efficiency, Catal. Today, 2017, 282, 13–23.

    Article  CAS  Google Scholar 

  35. M. R. Mohammadi and D. J. Fray, Mesoporous and nanocrystalline sol-gel derived NiTiO3 at the low temperature: Controlling the structure, size and surface area by Ni:Ti molar ratio, Solid State Sci., 2010, 12, 1629–1640.

    Article  CAS  Google Scholar 

  36. R. Saito, G. Dresselhaus and M. S. Dresselhaus, Physical properties of carbon nanotubes, Imperial College Press, London, 1998.

  37. C. Y. Xu, P. X. Zhang and L. Yan, Blue shift of Raman peak from coated TiO2 nanoparticles, J. Raman Spectrosc., 2001, 32, 862–865.

    Article  CAS  Google Scholar 

  38. S. Cui, R. Canet, A. Derre, M. Couzi and P. Delhaes, Characterization of multiwall carbon nanotubes and influence of surfactant in the nanocomposite processing, Carbon, 2003, 41, 797–809.

    Article  CAS  Google Scholar 

  39. M. Barberio, P. Barone, A. Imbrogno, A. S. Ruffolo, M. La Russa, N. Arcuri and F. Xu, Study of band gap of carbon nanotube-titanium dioxide heterostructures, J. Chem. Chem. Eng., 2014, 8, 36–41.

    CAS  Google Scholar 

  40. Y. Koo, R. Malik, N. Alvarez, V. N. Shanov, M. Schulz, J. Sankar and Y. Yun, Free-standing carbon nanotube–titania photoactive sheets, J. Colloid Interface Sci., 2015, 448, 148–155.

    Article  CAS  PubMed  Google Scholar 

  41. Y. Yu, J. C. Yu, C. Y. Chan, Y. K. Che, J. C. Zhao, L. Ding, W. K. Ge and P. K. Wong, Enhancement of adsorption and photocatalytic activity of TiO2 by using carbon nanotubes for the treatment of azo dye, Appl. Catal., B, 2005, 61, 1–11.

    Article  CAS  Google Scholar 

  42. E. Nouri, J. V. S. Krishna, C. V. Kumarc, V. Dracopoulos, L. Giribabu, M. R. Mohammadi and P. Lianos, Soluble tetratriphenylamine Zn phthalocyanine as Hole Transporting Material for Perovskite Solar Cells, Electrochim. Acta, 2016, 222, 875–880.

    Article  CAS  Google Scholar 

  43. E. Nouri, M. R. Mohammadi and P. Lianos, Impact of preparation method of TiO2-RGO nanocomposite photo-anodes on the performance of dye-sensitized solar cells, Electrochim. Acta, 2016, 219, 38–48.

    Article  CAS  Google Scholar 

  44. H. Zhou, C. Zhang, X. Wang, H. Li and Z. Du, Fabrication of TiO2-coated magnetic nanoparticles on functionalized multi-walled carbon nanotubes and their photocatalytic activity, Synth. Met., 2011, 161, 2199–2205.

    Article  CAS  Google Scholar 

  45. P. Du, L. Song, J. Xiong, N. Li, L. Wang, Z. Xi, N. Wang, L. Gao and H. Zhu, Dye-sensitized solar cells based on anatase TiO2/multi-walled carbon nanotubes composite nanofibers photoanode, Electrochim. Acta, 2013, 87, 651–656.

    Article  CAS  Google Scholar 

  46. V. B. Koli, A. G. Dhodamani, S. D. Delekara and S. H. Pawara, In situ sol-gel synthesis of anatase TiO2-MWCNTs nanocomposites and their photocatalytic applications, J. Photochem. Photobiol., A, 2017, 333, 40–48.

    Article  CAS  Google Scholar 

  47. Y. Yu, J. C. Yu, J. G. Yu, Y. C. Kwok, Y. K. Che, J. C. Zhao, L. Ding, W. K. Ge and P. K. Wong, Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes, Appl. Catal., A, 2005, 289, 186–196.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Mohammadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghartavol, H.M., Mohammadi, M.R., Afshar, A. et al. On the assessment of incorporation of CNT–TiO2 core–shell structures into nanoparticle TiO2 photoanodes in dye-sensitized solar cells. Photochem Photobiol Sci 18, 1840–1850 (2019). https://doi.org/10.1039/c9pp00100j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c9pp00100j

Navigation