Skip to main content

Advertisement

Log in

Electrochemical modulation of plasmon-induced charge separation behaviour at Au–TiO2 photocathodes

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Plasmon-induced charge separation (PICS) at the interface between a plasmonic nanoparticle and a semiconductor becomes less efficient as the plasmon resonance wavelength increases, because the energy of a photon may not be sufficiently higher than the interfacial Schottky barrier height. In this study, we developed PICS photocathodes by coating Au nanoparticles of different sizes on an ITO electrode with a thin TiO2 layer, and applied negative potentials to those photocathodes so as to suppress back electron transfer and improve the PICS photocurrent responses. The photocurrent enhancement factor was increased as the particle size was decreased, and enhancement of about two orders of magnitude was observed for small Au nanoparticles when bias voltage of 0.5 V was applied. In some cases the photocurrent enhancement was accompanied by a slight redshift of the photocurrent peak, which was caused by a lowered barrier. This technique would be useful for tuning the photocurrents when it is applied to devices such as electrochemical LSPR sensors and photodetectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Hutter and J. H. Fendler, Adv. Mater., 2004, 16, 1685.

    Article  CAS  Google Scholar 

  2. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao and R. P. Van Duyne, Nat. Mater., 2008, 7, 442.

    Article  CAS  PubMed  Google Scholar 

  3. K. M. Mayer and J. H. Hafner, Chem. Rev., 2011, 111, 3828.

    Article  CAS  PubMed  Google Scholar 

  4. Y. Tian and T. Tatsuma, J. Am. Chem. Soc., 2005, 127, 7632.

    Article  CAS  PubMed  Google Scholar 

  5. T. Tatsuma, H. Nishi and T. Ishida, Chem. Sci., 2017, 8, 3325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. N. Sakai, Y. Fujiwara, Y. Takahashi and T. Tatsuma, ChemPhysChem, 2009, 10, 766.

    Article  CAS  PubMed  Google Scholar 

  7. Y. Takahashi and T. Tatsuma, Nanoscale, 2010, 2, 1494.

    Article  CAS  PubMed  Google Scholar 

  8. E. Kazuma and T. Tatsuma, Adv. Mater. Interfaces, 2014, 1, 1400066.

    Article  CAS  Google Scholar 

  9. K. Yu, N. Sakai and T. Tatsuma, Electrochemistry, 2008, 76, 161.

    Article  CAS  Google Scholar 

  10. Y. Takahashi and T. Tatsuma, Appl. Phys. Lett., 2011, 99, 182110.

    Article  CAS  Google Scholar 

  11. Y. K. Lee, C. H. Jung, J. Park, H. Seo, G. A. Somorjai and J. Y. Park, Nano Lett., 2011, 11, 4251.

    Article  CAS  PubMed  Google Scholar 

  12. S. Mubeen, G. Hernandez-Sosa, D. Moses, J. Lee and M. Moskovits, Nano Lett., 2011, 11, 5548.

    Article  CAS  PubMed  Google Scholar 

  13. P. Reineck, G. P. Lee, D. Brick, M. Karg, P. Mulvaney and U. Bach, Adv. Mater., 2012, 24, 4750.

    Article  CAS  PubMed  Google Scholar 

  14. E. Kowalska, R. Abe and B. Ohtani, Chem. Commun., 2009, 2, 241.

    Article  Google Scholar 

  15. A. Tanaka, K. Hashimoto and H. Kominami, J. Am. Chem. Soc., 2012, 134, 14526.

    Article  CAS  PubMed  Google Scholar 

  16. S. Mubeen, J. Lee, N. Singh, S. Krämer, G. D. Stucky and M. Moskovits, Nat. Nanotechnol., 2013, 8, 247.

    Article  CAS  PubMed  Google Scholar 

  17. Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota and A. Fujishima, Nat. Mater., 2003, 2, 29.

    Article  CAS  Google Scholar 

  18. K. Saito, I. Tanabe and T. Tatsuma, J. Phys. Chem. Lett., 2016, 7, 4363.

    Article  CAS  PubMed  Google Scholar 

  19. H. Nishi, M. Sakamoto and T. Tatsuma, Chem. Commun., 2018, 54, 11741.

    Article  CAS  Google Scholar 

  20. K. Saito and T. Tatsuma, Nano Lett., 2018, 18, 3209.

    Article  CAS  PubMed  Google Scholar 

  21. Y.-C. Zhu, N. Zhang, Y.-F. Ruan, W.-W. Zhao, J.-J. Xu and H.-Y. Chen, Anal. Chem., 2016, 88, 5626.

    Article  CAS  PubMed  Google Scholar 

  22. T. Tatsuma, Y. Katagi, S. Watanabe, K. Akiyoshi, T. Kawawaki, H. Nishi and E. Kazuma, Chem. Commun., 2015, 51, 6100.

    Article  CAS  Google Scholar 

  23. N. Sakai, T. Sasaki, K. Matsubara and T. Tatsuma, J. Mater. Chem., 2010, 20, 4371.

    Article  CAS  Google Scholar 

  24. W. Lee, J. Navarrete, B. Evanko, G. D. Stucky, S. Mubeen and M. Moskovits, Chem. Commun., 2016, 52, 13460.

    Article  CAS  Google Scholar 

  25. M. L. Brongersma, N. J. Halas and P. Nordlander, Nat. Nanotechnol., 2015, 10, 25.

    Article  CAS  PubMed  Google Scholar 

  26. M. M. Miller and A. A. Lazarides, J. Phys. Chem. B, 2005, 109, 21556.

    Article  CAS  PubMed  Google Scholar 

  27. Y. Nishijima, K. Ueno, Y. Yokota, K. Murakoshi and H. Misawa, J. Phys. Chem. Lett., 2010, 1, 2031.

    Article  CAS  Google Scholar 

  28. J. Lee, S. Mubeen, X. Ji, G. D. Stucky and M. Moskovits, Nano Lett., 2012, 12, 5014.

    Article  CAS  PubMed  Google Scholar 

  29. C. Ng, J. J. Cadusch, S. Dligatch, A. Roberts, T. J. Davis, P. Mulvaney and D. E. Gómez, ACS Nano, 2016, 10, 4704.

    Article  CAS  PubMed  Google Scholar 

  30. F. P. García de Arquer, A. Mihi, D. Kufer and G. Konstantatos, ACS Nano, 2013, 7, 3581.

    Article  PubMed  CAS  Google Scholar 

  31. L. Wu, G. M. Kim, H. Nishi and T. Tatsuma, Langmuir, 2017, 33, 8976.

    Article  CAS  PubMed  Google Scholar 

  32. L. Wen, Y. Chen, L. Liang and Q. Chen, ACS Photonics, 2018, 5, 581.

    Article  CAS  Google Scholar 

  33. Y.-L. Ho, Y.-H. Tai, J. K. Clark, Z. Wang, P.-K. Wei and J.-J. Delaunay, ACS Photonics, 2018, 5, 2617.

    Article  CAS  Google Scholar 

  34. K. Sell, I. Barke, S. Polei, C. Schumann, V. von Oeynhausen and K.-H. Meiwes-Broer, Phys. Status Solidi B, 2010, 247, 1087.

    CAS  Google Scholar 

  35. Y. Tachibana, K. Umekita, Y. Otsuka and S. Kuwabata, J. Phys. D: Appl. Phys., 2008, 41, 102002.

    Article  CAS  Google Scholar 

  36. A. B. Tesler, L. Chuntonov, T. Karakouz, T. A. Bendikov, G. Haran, A. Vaskevich and I. Rubinstein, J. Phys. Chem. C, 2011, 115, 24642.

    Article  CAS  Google Scholar 

  37. P. Klapetek, M. Valtr, D. Nečas, O. Salyk and P. Dzik, Nanoscale Res. Lett., 2011, 6, 514.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. N. Sebaihi, B. D. Boeck, Y. Yuana, R. Nieuwland and J. Pétry, Meas. Sci. Technol., 2017, 28, 034006.

    Article  CAS  Google Scholar 

  39. J. Turkevich, P. C. Stevenson and J. Hillier, Discuss. Faraday Soc., 1951, 11, 55.

    Article  Google Scholar 

  40. S. Link and M. A. El-Sayed, J. Phys. Chem. B, 1999, 103, 8410.

    Article  CAS  Google Scholar 

  41. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, John Wiley & Sons, Inc., 2007.

  42. H. Lee, Y. K. Lee, T. N. Van and J. Y. Park, Appl. Phys. Lett., 2013, 103, 173103.

    Article  CAS  Google Scholar 

  43. H. Lee, H. Lee and J. Y. Park, Nano Lett., 2019, 19, 891.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c9pp00098d

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akiyoshi, K., Tatsuma, T. Electrochemical modulation of plasmon-induced charge separation behaviour at Au–TiO2 photocathodes. Photochem Photobiol Sci 18, 1727–1731 (2019). https://doi.org/10.1039/c9pp00098d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c9pp00098d

Navigation