Skip to main content
Log in

Acceleration of photochromism and negative photochromism by the interactions with mesoporous silicas

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The adsorption of merocyanine dye onto mesoporous silicas with varied pore sizes (5.5, 9.4 and 2.2 nm) from the toluene solution of 1,3,3-trimethylindolino-6’-nitrobenzopyrylospiran under UV irradiation was investigated quantitatively. The photoinduced adsorption of merocyanine onto SBA-15 with the pore diameter of 9.4 nm followed the pseudo-second order kinetics and the rate constant was larger than that observed for MCM-41 (pore size of 2.2 nm) owing to the efficient diffusion of merocyanine. The maximum adsorbed amounts of the merocyanine dye was 152 mg g−1 of SBA-15, which corresponded to the sufficiently high concentration of merocyanine in the pores (0.376 mol L−1 of pore). The resulting red-colored hybrids (SBA-15 containing merocyanine) showed decoloration in the solid-state by visible light irradiation (negative photochromism). The conversion was high (about 80% at the photostationary state) under visible light irradiation at room temperature using a solar simulator (100 W). The red color was regenerated by storing the photochemically formed colorless samples in the dark at room temperature. The half-lives of the thermal coloration process were 2.6, 1.9 and 1.3 h for the MCM-41, SBA-15s with the BJH pore sizes of 5.5 and 9.4 nm, respectively. Since the coloration was affected by the diffusion of the molecules in the pores, larger pores provided the efficient molecular diffusion, leading to faster reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ogawa and K. Kuroda, Photofunctions of Intercalation Compounds, Chem. Rev., 1995, 95, 399–438.

    Article  CAS  Google Scholar 

  2. S. Takagi, T. Shimada, Y. Ishida, T. Fujimura, D. Masui, H. Tachibana, M. Eguchi and H. Inoue, Size-matching effect on inorganic nanosheets: Control of distance, alignment, and orientation of molecular adsorption as a bottom-up methodology for nanomaterials, Langmuir, 2013, 29, 2108–2119.

    Article  CAS  PubMed  Google Scholar 

  3. T. Okada, M. Sohmiya and M. Ogawa, in, Photofunctional Layered Materials, ed. M. Wei and D. Yan, Springer, Berlin, 2015, pp. 177–211.

  4. M. Ogawa, K. Saito and M. Sohmiya, Possible Roles of the Spatial Distribution of Organic Guest Species in Mesoporous Silicas to Control the Properties of the Hybrids, Eur. J. Inorg. Chem., 2015, 1126–1136.

  5. G. Schulz-Ekloff, D. Wöhrle, B. van Duffel and R. A. Schoonheydt, Chromophores in porous silicas and minerals: preparation and optical properties, Microporous Mesoporous Mater., 2002, 51, 91–138.

    Article  CAS  Google Scholar 

  6. H. Van Olphen, Maya Blue: A clay-organic pigment?, Science, 1966, 154, 645–646.

  7. A. Doménech, M. T. Doménech-Carbó and H. G. M. Edwards, On the interpretation of the Raman spectra of Maya Blue: A review on the literature data, J. Raman Spectrosc., 2011, 42, 86–96.

    Article  CAS  Google Scholar 

  8. I. M. V. Leitão and J. S. Seixas De Melo, Maya blue, an ancient guest-host pigment: Synthesis and models, J. Chem. Educ., 2013, 90, 1493–1497.

    Article  CAS  Google Scholar 

  9. N. D. Bernardino, V. R. L. Constantino and D. L. A. De Faria, Probing the Indigo Molecule in Maya Blue Simulants with Resonance Raman Spectroscopy, J. Phys. Chem. C, 2018, 122, 11505–11515.

    Article  CAS  Google Scholar 

  10. A. P. Teepakakorn, S. Bureekaew and M. Ogawa, Adsorption induced dye stability of cationic dyes on clay nanosheet, Langmuir, 2018, 34, 14069–14075.

    Article  CAS  PubMed  Google Scholar 

  11. C. Schomburg, M. Wark, Y. Rohlfing, G. Schulz-Ekloff and D. Wöhrle, Photochromism of spiropyran in molecular sieve voids: effects of host–guest interaction on isomer status, switching stability and reversibility, J. Mater. Chem., 2001, 11, 2014–2021.

    Article  CAS  Google Scholar 

  12. Y. Kohno, S. Tsubota, Y. Shibata, K. Nozawa, K. Yoda, M. Shibata and R. Matsushima, Enhancement of the photostability of flavylium dye adsorbed on mesoporous silicate, Microporous Mesoporous Mater., 2008, 116, 70–76.

    Article  CAS  Google Scholar 

  13. A. Corma, H. García, S. Iborra, V. Martí, M. A. Miranda and J. Primo, Cooperative Effect of Acid Sites in the Photocyclization of Azobenzene within the Zeolite Microenvironment, J. Am. Chem. Soc., 1993, 115, 2177–2180.

    Article  CAS  Google Scholar 

  14. H. Okada, N. Nakajima, T. Tanaka and M. Iwamoto, Improvement in photocyclization efficiency of diaryl ethenes by adjusting the pore size of mesoporous silica, Angew. Chem., Int. Ed., 2005, 44, 7233–7236.

    Article  CAS  Google Scholar 

  15. S. Huh, H. T. Chen, J. W. Wiench, M. Pruski and V. S. Y. Lin, Controlling the Selectivity of Competitive Nitroaldol Condensation by Using a Bifunctionalized Mesoporous Silica Nanosphere-Based Catalytic System, J. Am. Chem. Soc., 2004, 126, 1010–1011.

    Article  CAS  PubMed  Google Scholar 

  16. E. Hadjoudis, A. B. Bourlinos and D. Petridis, The environmental effect of MCM-41 mesoporous silica on solid thermochromic, N-(5-chlorosalicylidene)aniline, J. Inclusion Phenom., 2002, 42, 275–279.

    Article  CAS  Google Scholar 

  17. L. Z. Zhang, Y. Xiong, P. Cheng, G. Q. Tang and D. Z. Liao, Molecular orbital confinement of a Schiff base molecule in the nanoporous channels of MCM-41 host, Chem. Phys. Lett., 2002, 358, 278–283.

    Article  CAS  Google Scholar 

  18. M. Kojima, T. Takagi and T. Goshima, Photoisomerization of azobenzene in zeolite cavities, Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A, 2000, 344, 179–184.

    Article  CAS  Google Scholar 

  19. P. Sierocki, H. Maas, P. Dragut, G. Richardt, F. Vogtle, L. De Cola, F. Brouwer and J. I. Zink, Photoisomerization of azobenzene derivatives in nanostructured silica, J. Phys. Chem. B, 2006, 110, 24390–24398.

    Article  CAS  PubMed  Google Scholar 

  20. G. Wirnsberger, B. J. Scott, B. F. Chmelka and G. D. Stucky, Fast response photochromic mesostructures, Adv. Mater., 2000, 12, 1450–1454.

    Article  CAS  Google Scholar 

  21. L. A. Mühlstein, J. Sauer and T. Bein, Tuning the thermal relaxation of a photochromic dye in functionalized mesoporous silica, Adv. Funct. Mater., 2009, 19, 2027–2037.

    Article  CAS  Google Scholar 

  22. M. Sohmiya, K. Saito and M. Ogawa, Host–guest chemistry of mesoporous silicas: precise design of location, density and orientation of molecular guests in mesopores, Sci. Technol. Adv. Mater., 2015, 16, 54201.

    Article  CAS  Google Scholar 

  23. K. Morishige and K. Kawano, Freezing and Melting of Methyl Chloride in a Single Cylindrical Pore: Anomalous Pore-Size Dependence of Phase-Transition Temperature, J. Phys. Chem. B, 1999, 103, 7906–7910.

    Article  CAS  Google Scholar 

  24. G. Schwalb and F. W. Deeg, Pore-size-dependent orientational dynamics of a liquid crystal confined in a porous glass, Phys. Rev. Lett., 1995, 74, 1383–1386.

    Article  CAS  PubMed  Google Scholar 

  25. F. Grinberg and R. Kimmich, Pore size dependence of the dipolar-correlation effect on the stimulated echo in liquid crystals confined in porous glass, J. Chem. Phys., 1996, 105, 3301–3306.

    Article  CAS  Google Scholar 

  26. T. Itoh, K. Yano, Y. Inada and Y. Fukushima, Photostabilized Chlorophyll a in Mesoporous Silica: Adsorption Properties and Photoreduction Activity of Chlorophyll a, J. Am. Chem. Soc., 2002, 124, 13437–13441.

    Article  CAS  PubMed  Google Scholar 

  27. T. Itoh, K. Yano, Y. Inada and Y. Fukushima, Stabilization of chlorophyll a in mesoporous silica and its pore size dependence, J. Mater. Chem., 2002, 12, 3275–3277.

    Article  CAS  Google Scholar 

  28. M. Tagaya and M. Ogawa, Possible pore size effects on the state of tris(8-quinolinato)aluminum(III) (Alq3) adsorbed in mesoporous silicas and their temperature dependence, Phys. Chem. Chem. Phys., 2008, 10, 6849–6855.

    Article  CAS  PubMed  Google Scholar 

  29. S. G. Intasa-ard, K. Imwiset, S. Bureekaew and M. Ogawa, Mechanochemical methods for the preparation of intercalation compounds, from intercalation to the formation of layered double hydroxides, Dalton Trans., 2018, 47, 2896–2916.

    Article  CAS  PubMed  Google Scholar 

  30. M. Irie, T. Fukaminato, K. Matsuda and S. Kobatake, Photochromism of Diarylethene Molecules and Crystals: Memories, Switches, and Actuators, Chem. Rev., 2014, 114, 12174–12277.

    Article  CAS  PubMed  Google Scholar 

  31. E. Deniz, S. Sortino and F. M. Raymo, Fast fluorescence photoswitching in a bodipy-oxazine dyad with excellent fatigue resistance, J. Phys. Chem. Lett., 2010, 1, 1690–1693.

    Article  CAS  Google Scholar 

  32. K. Mutoh, M. Sliwa and J. Abe, Rapid fluorescence switching by using a fast photochromic [2.2]paracyclophane-bridged imidazole dimer, J. Phys. Chem. C, 2013, 117, 4808–4814.

    Article  CAS  Google Scholar 

  33. M. Irie and M. Morimoto, Photoswitchable Turn-on Mode Fluorescent Diarylethenes: Strategies for Controlling the Switching Response, Bull. Chem. Soc. Jpn., 2018, 91, 237–250.

    Article  CAS  Google Scholar 

  34. N. Ishii, T. Kato and J. Abe, A real-time dynamic holographic material using a fast photochromic molecule, Sci. Rep., 2012, 2, 819.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. N. Ishii and J. Abe, Fast photochromism in polymer matrix with plasticizer and real-time dynamic holographic properties, Appl. Phys. Lett., 2013, 102, 163301.

    Article  CAS  Google Scholar 

  36. Y. Kobayashi and J. Abe, Real-Time Dynamic Hologram of a 3D Object with Fast Photochromic Molecules, Adv. Opt. Mater., 2016, 4, 1354–1357.

    Article  CAS  Google Scholar 

  37. T. Seki, A wide array of photoinduced motions in molecular and macromolecular assemblies at interfaces, Bull. Chem. Soc. Jpn., 2018, 91, 1026–1057.

  38. C. R. Lee, T. L. Fu, K. T. Cheng, T. S. Mo and A. Y. G. Fuh, Surface-assisted photoalignment in dye-doped liquidcrystal films, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2004, 69, 031704.

    Article  CAS  Google Scholar 

  39. M. Suda, A New Photo-Control Method for Organic–Inorganic Interface Dipoles and Its Application to Photo-Controllable Molecular Devices, Bull. Chem. Soc. Jpn., 2018, 91, 19–28.

  40. S. Aiken, R. J. L. Edgar, C. D. Gabbutt, B. M. Heron and P. A. Hobson, Negatively photochromic organic compounds: Exploring the dark side, Dyes Pigm., 2018, 149, 92–121.

    Article  CAS  Google Scholar 

  41. K. Ayub, R. Li, C. Bohne, R. V. Williams and R. H. Mitchell, Calculation Driven Synthesis of an Excellent Dihydropyrene Negative Photochrome and its Photochemical Properties, J. Am. Chem. Soc., 2011, 133, 4040–4045.

    Article  CAS  PubMed  Google Scholar 

  42. T. Yamaguchi, Y. Kobayashi and J. Abe, Fast Negative Photochromism of 1,1′-Binaphthyl-Bridged Phenoxyl – Imidazolyl Radical Complex, J. Am. Chem. Soc., 2015, 138, 906–913.

    Article  CAS  Google Scholar 

  43. K. Uchida, N. Izumi, S. Sukata, Y. Kojima, S. Nakamura and M. Irie, Photoinduced reversible formation of microfibrils on a photochromic diarylethene microcrystalline surface, Angew. Chem., Int. Ed., 2006, 45, 6470–6473.

    Article  CAS  Google Scholar 

  44. K. Higashiguchi, G. Taira, J. I. Kitai, T. Hirose and K. Matsuda, Photoinduced macroscopic morphological transformation of an amphiphilic diarylethene assembly: Reversible dynamic motion, J. Am. Chem. Soc., 2015, 137, 2722–2729.

    Article  CAS  PubMed  Google Scholar 

  45. Y. Okabe and M. Ogawa, Photoinduced adsorption of spiropyran into mesoporous silicas as photomerocyanine, RSC Adv., 2015, 5, 101789–101793.

    Article  CAS  Google Scholar 

  46. T. Yamaguchi, A. Maity, V. Polshettiwar and M. Ogawa, Photochromism of a Spiropyran in the Presence of a Dendritic Fibrous Nanosilica; Simultaneous Photochemical Reaction and Adsorption, J. Phys. Chem. A, 2017, 121, 8080–8085.

    Article  CAS  PubMed  Google Scholar 

  47. T. Yamaguchi, A. Maity, V. Polshettiwar and M. Ogawa, Negative Photochromism Based on Molecular Diffusion Between Hydrophilic and Hydrophobic Particles in the Solid-State, Inorg. Chem., 2018, 57, 3671–3674.

    Article  CAS  PubMed  Google Scholar 

  48. T. Yamaguchi and M. Ogawa, Hydrophilic Internal Pore and Hydrophobic Particle Surface of Organically Modified Mesoporous Silica Particleto Host Photochromic Molecules, Chem. Lett., 2018, 48, 170–172.

    Article  CAS  Google Scholar 

  49. M. Grün, K. K. Unger, A. Matsumoto and K. Tsutsumi, Novel pathways for the preparation of mesoporous MCM-41 materials: control of porosity and morphology, Microporous Mesoporous Mater., 1999, 27, 207–216.

    Article  Google Scholar 

  50. D. Zhao, Q. Huo, J. Feng, B. F. Chmelka and G. D. Stucky, Tri-, Tetra-, and Octablock Copolymer and Nonionic Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures, J. Am. Chem. Soc., 1998, 120, 6024–6036.

    Article  CAS  Google Scholar 

  51. Y. S. Ho and G. McKay, Pseudo-second order model for sorption processes, Process Biochem., 1999, 34, 451–465.

    Article  CAS  Google Scholar 

  52. Y. Lia, J. Zhou, Y. Wang, F. Zhang and X. Song, Reinvestigation on the photoinduced aggregation behavior of photochromic spiropyrans in cyclohexane, J. Photochem. Photobiol., A, 1998, 113, 65–72.

    Article  Google Scholar 

  53. Y. Kalisky and D. J. Williams, Laser photolysis studies of spiropyran-merocyanine aggregate formation in solution, Chem. Phys. Lett., 1982, 86, 91–94.

    Article  Google Scholar 

  54. H. Tomioka and T. Itoh, Photochromism of spiropyrans in organized molecular assemblies. Formation of J- and H-aggregates of photomerocyanines in bilayers-clay matrices, J. Chem. Soc., Chem. Commun., 1991, 532–533.

  55. T. Seki and K. Ichimura, Formation of Head-to-Tail and Side-by-Side Aggregates of Photochromic Spiropyrans in Bilayer Membrane, J. Phys. Chem., 1990, 94, 3769–3775.

    Article  CAS  Google Scholar 

  56. H. Eckhardt, A. Bose and V. A. Krongauz, Formation of molecular H- and J-stacks by the spiropyran-merocyanine transformation in a polymer matrix, Polymer, 1987, 28, 1959–1964.

    Article  CAS  Google Scholar 

  57. W. Clegg, N. C. Norman, T. Flood, L. Sallans, W. S. Kwak, P. L. Kwiatkowski and J. G. Lasch, Structures of three photochromic compounds and three non-photochromic derivatives; the effect of methyl substituents, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1991, 47, 817–824.

    Article  Google Scholar 

  58. P. K. Kundu, G. L. Olsen, V. Kiss and R. Klajn, Nanoporous frameworks exhibiting multiple stimuli responsiveness, Nat. Commun., 2014, 5, 3588.

    Article  PubMed  CAS  Google Scholar 

  59. J. Harada, Y. Kawazoe and K. Ogawa, Photochromism of spiropyrans and spirooxazines in the solid state: low temperature enhances photocoloration, Chem. Commun., 2010, 46, 2593–2595.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Ogawa.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c9pp00081j

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamaguchi, T., Leelaphattharaphan, N.N., Shin, H. et al. Acceleration of photochromism and negative photochromism by the interactions with mesoporous silicas. Photochem Photobiol Sci 18, 1742–1749 (2019). https://doi.org/10.1039/c9pp00081j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c9pp00081j

Navigation