Skip to main content
Log in

Simultaneous recognition of cysteine and cytosine using thiophene-based organic nanoparticles decorated with Au NPs and bio-imaging of cells

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Biomolecules like cysteine and cytosine play a significant role in many physiological processes, and their unusual level in biological systems can lead to many diseases including cancer. Indeed, the need for selective detection of these moieties by a fluorescence probe is imperative. Thus, thiophene based Schiff N,N′-bis(thiophene-2-ylmethylene)thiophenemethane (BMTM) was synthesized and then characterized using several analytical techniques before converting it into organic nanoparticles (ONPs). Then, fluorescent organic inorganic nanohybrids (FONs) were obtained after decorating ONPs with AuNPs to yield BMTM-Au-ONPs (FONPs). The morphology of the particles, analyzed using a Transmission Electron Microscope (TEM), shows that AuNPs were embedded with low density organic matter (ONPs). FONPs were employed to recognize cysteine and cytosine simultaneously. No interference was observed from other moieties such as guanine, uracyl, NADH, NAD, ATP, and adenine during the detection. It means that the intensity of the fluorescence signal was significantly changed (enhanced for cytosine and quenched for cysteine). So, FONPs were used to detect cysteine and cytosine in real samples, like Saccharomyces cerevisiae cells. As expected, no considerable fluorescence signal for cysteine was observed, while for cytosine, strong fluorescence signals were detected in the cells. DFT was used to explain the interaction of FONPs with cysteine or cytosine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. A. J. Zucchero, P. L. McGrier and U. H. F. Bunz, Cross-Conjugated Cruciform Fluorophores, Acc. Chem. Res., 2010, 43, 397–408.

    Article  CAS  PubMed  Google Scholar 

  2. J. Gao, H. M. Wang, L. Wang, J. Y. Wang, D. L. Kong and Z. M. Yang, Enzyme Promotes the Hydrogelation from a Hydrophobic Small Molecule, J. Am. Chem. Soc., 2009, 131, 11286–11287.

    Article  CAS  PubMed  Google Scholar 

  3. A. L. Balch, Dynamic Crystals: Visually Detected Mechanochemical Changes in the Luminescence of Gold and Other Transition-Metal Complexes, Angew. Chem., Int. Ed., 2009, 48, 2641–2644.

  4. A. Chowdhury, P. Howlader and P. S. Mukherjee, Mechanofluorochromic Pt-II Luminogen and Its Cysteine Recognition, Chem. –, Eur. J., 2016, 22, 1424–1434.

    Article  CAS  Google Scholar 

  5. A. Saini, J. Singh, R. Kaur, N. Singh and N. Kaur, Naphthalimide-based organic nanoparticles for aluminium recognition in acidic soil and aqueous media, New J. Chem., 2014, 38, 4580–4586.

    Article  CAS  Google Scholar 

  6. H. E. Toma, Supramolecular nanotechnology: from molecules to devices, Curr. Sci., 2008, 95, 1202–1225.

  7. G. L. Hornyak G., H. Tibbals and A. Rao, Introduction to Nanoscience, 2008.

  8. R. Narayanan and M. A. El-Sayed, Catalysis with Transition Metal Nanoparticles in Colloidal Solution: Nanoparticle Shape Dependence and Stability, J. Phys. Chem. B, 2005, 109, 12663–12676.

    Article  CAS  PubMed  Google Scholar 

  9. D. A. Giljohann, D. S. Seferos, P. C. Patel, J. E. Millstone, N. L. Rosi and C. A. Mirkin, Oligonucleotide loading deter-mines cellular uptake of DNA-modified gold nanoparticles, Nano Lett., 2007, 7, 3818–3821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. D. S. Seferos, A. E. Prigodich, D. A. Giljohann, P. C. Patel and C. A. Mirkin, Polyvalent DNA Nanoparticle Conjugates Stabilize Nucleic Acids, Nano Lett., 2009, 9, 308–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. A. E. Prigodich, P. S. Randeria, W. E. Briley, N. J. Kim, W. L. Daniel, D. A. Giljohann and C. A. Mirkin, Multiplexed Nanoflares: mRNA Detection in Live Cells, Anal. Chem., 2012, 84, 2062–2066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Y. Zhang, M. Li, H. Y. Liu, S. G. Ge and J. H. Yu, Label-free colorimetric logic gates based on free gold nanoparticles and the coordination strategy between cytosine and silver ions, New J. Chem., 2016, 40, 5516–5522.

    Article  CAS  Google Scholar 

  13. H. Y. Niu, S. H. Wang, Z. Zhou, Y. R. Ma, X. F. Ma and Y. Q. Cai, Sensitive Colorimetric Visualization of Perfluorinated Compounds Using Poly(ethylene glycol) and Perfluorinated Thiols Modified Gold Nanoparticles, Anal. Chem., 2014, 86, 4170–4177.

    Article  CAS  PubMed  Google Scholar 

  14. Z. Z. Huang, H. N. Wang and W. S. Yang, Glutathione-facilitated design and fabrication of gold nanoparticle-based logic gates and keypad lock, Nanoscale, 2014, 6, 8300–8305.

    Article  CAS  PubMed  Google Scholar 

  15. Z. Q. Gao, K. C. Deng, X. D. Wang, M. Miro and D. P. Tang, High-Resolution Colorimetric Assay for Rapid Visual Readout of Phosphatase Activity Based on Gold/Silver Core/Shell Nanorod, ACS Appl. Mater. Interfaces, 2014, 6, 18243–18250.

    Article  CAS  PubMed  Google Scholar 

  16. L. Jiang, Y. H. Sun, C. Nowak, A. Kibrom, C. J. Zou, J. Ma, H. Fuchs, S. Z. Li, L. F. Chi and X. D. Chen, Patterning of Plasmonic Nanoparticles into Multiplexed One-Dimensional Arrays Based on Spatially Modulated Electrostatic Potential, ACS Nano, 2011, 5, 8288–8294.

    Article  CAS  PubMed  Google Scholar 

  17. H. Jans and Q. Huo, Gold nanoparticle-enabled biological and chemical detection and analysis, Chem. Soc. Rev., 2012, 41, 2849–2866.

    Article  CAS  PubMed  Google Scholar 

  18. J. H. Lee, M. V. Yigit, D. Mazumdar and Y. Lu, Molecular diagnostic and drug delivery agents based on aptamernanomaterial conjugates, Adv. Drug Delivery Rev., 2010, 62, 592–605.

    Article  CAS  Google Scholar 

  19. C. W. Corti, R. J. Holliday and D. T. Thompson, Developing new industrial applications for gold: Gold nanotechnology, Gold Bull., 2002, 35, 111–136.

    Article  CAS  Google Scholar 

  20. M. Beytur, F. Kardas, O. Akyildirim, A. Ozkan, B. Bankoglu, H. Yuksek, M. L. Yola and N. Atar, A highly selective and sensitive voltammetric sensor with molecularly imprinted polymer based silver@gold nanoparticles/ionic liquid modified glassy carbon electrode for determination of ceftizoxime, J. Mol. Liq., 2018, 251, 212–217.

    Article  CAS  Google Scholar 

  21. M. L. Yola and N. Atar, A novel voltammetric sensor based on gold nanoparticles involved in p-aminothiophenol functionalized multi-walled carbon nanotubes: Application to the simultaneous determination of quercetin and rutin, Electrochim. Acta, 2014, 119, 24–31.

    Article  CAS  Google Scholar 

  22. M. L. Yola, N. Atar, Z. Ustundag and A. O. Solak, A novel voltammetric sensor based on p-aminothiophenol functionalized graphene oxide/gold nanoparticles for determining quercetin in the presence of ascorbic acid, J. Electroanal. Chem., 2013, 698, 9–16.

    Article  CAS  Google Scholar 

  23. V. K. Gupta, M. L. Yola, M. S. Qureshi, A. O. Solak, N. Atar and Z. Ustundag, A novel impedimetric biosensor based on graphene oxide/gold nanoplatform for detection of DNA arrays, Sens. Actuators, B, 2013, 188, 1201–1211.

    Article  CAS  Google Scholar 

  24. M. L. Yola, T. Eren and N. Atar, A sensitive molecular imprinted electrochemical sensor based on gold nanoparticles decorated graphene oxide: Application to selective determination of tyrosine in milk, Sens. Actuators, B, 2015, 210, 149–157.

    Article  CAS  Google Scholar 

  25. M. L. Yola, N. Atar, T. Eren, H. Karimi-Maleh and S. B. Wang, Sensitive and selective determination of aqueous triclosan based on gold nanoparticles on polyoxometalate/reduced graphene oxide nanohybrid, RSC Adv., 2015, 5, 65953–65962.

    Article  CAS  Google Scholar 

  26. N. Atar, T. Eren and M. L. Yola, Ultrahigh capacity anode material for lithium ion battery based on rod gold nanoparticles decorated reduced graphene oxide, Thin Solid Films, 2015, 590, 156–162.

    Article  CAS  Google Scholar 

  27. N. Atar, T. Eren, M. L. Yola, H. Karimi-Maleh and B. Demirdogen, Magnetic iron oxide and iron oxide@gold nanoparticle anchored nitrogen and sulfur-functionalized reduced graphene oxide electrocatalyst for methanol oxidation, RSC Adv., 2015, 5, 26402–26409.

    Article  CAS  Google Scholar 

  28. M. C. Daniel and D. Astruc, Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology, Chem. Rev., 2004, 104, 293–346.

    Article  CAS  PubMed  Google Scholar 

  29. X. J. Liu, D. L. Yang, W. Q. Chen, L. Yang, F. P. Qi and X. Z. Song, A red-emitting fluorescent probe for specific detection of cysteine over homocysteine and glutathione with a large Stokes shift, Sens. Actuators, B, 2016, 234, 27–33.

    Article  CAS  Google Scholar 

  30. Y. Suzuki, K. Suda, Y. Matsuyama, S. Era and A. Soejima, Close relationship between redox state of human serum albumin and serum cysteine levels in non-diabetic CKD patients with various degrees of renal function, Clin. Nephrol., 2014, 82, 320–325.

    Article  CAS  PubMed  Google Scholar 

  31. S. Y. Zhang, C. N. Ong and H. M. Shen, Involvement of proapoptotic Bcl-2 family members in parthenolideinduced mitochondrial dysfunction and apoptosis, Cancer Lett., 2004, 211, 175–188.

    Article  CAS  PubMed  Google Scholar 

  32. C. A. Huerta-Aguilar, P. Thangarasu and J. G. Mora, Structural influence in the interaction of cysteine with five coordinated copper complexes: Theoretical and experimental studies, J. Mol. Struct., 2018, 1157, 660–671.

    Article  CAS  Google Scholar 

  33. S. C. Lu, Regulation of glutathione synthesis, Mol. Aspects Med., 2009, 30, 42–59.

  34. H. Tapiero, D. M. Townsend and K. D. Tew, The antioxidant role of selenium and seleno-compounds, Biomed. Pharmacother., 2003, 57, 134–144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. S. Shahrokhian, Lead phthalocyanine as a selective carrier for preparation of a cysteine-selective electrode, Anal. Chem., 2001, 73, 5972–5978.

  36. S. K. Kim, D. H. Lee, J. I. Hong and J. Yoon, Chemosensors for Pyrophosphate, Acc. Chem. Res., 2009, 42, 23–31.

    Article  CAS  PubMed  Google Scholar 

  37. A. T. Wright and E. V. Anslyn, Differential receptor arrays and assays for solution-based molecular recognition, Chem. Soc. Rev., 2006, 35, 14–28.

    Article  CAS  PubMed  Google Scholar 

  38. H. Refsum, A. D. Smith, P. M. Ueland, E. Nexo, R. Clarke, J. McPartlin, C. Johnston, F. Engbaek, J. Schneede, C. McPartlin and J. M. Scott, Facts and recommendations about total homocysteine determinations: An expert opinion, Clin. Chem., 2004, 50, 3–32.

    Article  CAS  PubMed  Google Scholar 

  39. J. B. J. van Meurs, R. A. M. Dhonukshe-Rutten, S. M. F. Pluijm, M. van der Klift, R. de Jonge, J. Lindemans, L. de Groot, A. Hofman, J. C. M. Witteman, J. van Leeuwen, M. M. B. Breteler, P. Lips, H. A. P. Pols and A. G. Uitterlinden, Homocysteine levels and the risk of osteoporotic fracture, N. Engl. J. Med., 2004, 350, 2033–2041.

    Article  PubMed  Google Scholar 

  40. J. B. J. van Meurs, H. A. P. Pols and A. G. Uitterlinden, Homocysteine as a predictive factor for hip fracture in older persons - Reply, N. Engl. J. Med., 2004, 351, 1029–1029.

    Google Scholar 

  41. A. C. Flint, H. Kamel, B. B. Navi, V. A. Rao, B. S. Faigeles, C. Conell, J. G. Klingman, N. K. Hills, M. Nguyen-Huynh, S. P. Cullen, S. Sidney and S. C. Johnston, Inpatient statin use predicts improved ischemic stroke discharge disposition, Neurology, 2012, 78, 1678–1683.

    Article  CAS  PubMed  Google Scholar 

  42. M. T. Heafield, S. Fearn, G. B. Steventon, R. H. Waring, A. C. Williams and S. G. Sturman, Plasma cysteine and sulfate levels in patients with motor-neuron, parkinsons and alzheimers-disease, Neurosci. Lett., 1990, 110, 216–220.

    Article  CAS  PubMed  Google Scholar 

  43. L. El-Khairy, S. E. Vollset, H. Refsum and P. M. Ueland, Plasma total cysteine, pregnancy complications, and adverse pregnancy outcomes: the Hordaland Homocysteine Study, Am. J. Clin. Nutr., 2003, 77, 467–472.

    Article  CAS  PubMed  Google Scholar 

  44. H. Bradley, A. Gough, R. S. Sokhi, A. Hassell, R. Waring and P. Emery, Sulfate metabolism is abnormal in patients with rheumatoid-arthritis - confirmation by in-vivo biochemical findings, J. Rheumatol., 1994, 21, 1192–1196.

    CAS  PubMed  Google Scholar 

  45. X. Chen, Y. Zhou, X. J. Peng and J. Yoon, Fluorescent and colorimetric probes for detection of thiols, Chem. Soc. Rev., 2010, 39, 2120–2135.

    Article  CAS  PubMed  Google Scholar 

  46. Y. Ogasawara, Y. Mukai, T. Togawa, T. Suzuki, S. Tanabe and K. Ishii, Determination of plasma thiol bound to albumin using affinity chromatography and high-performance liquid chromatography with fluorescence detection: Ratio of cysteinyl albumin as a possible biomarker of oxidative stress, J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2007, 845, 157–163.

    Article  CAS  Google Scholar 

  47. P. R. Lima, W. J. R. Santos, R. D. S. Luz, F. S. Damos, A. B. Oliveira, M. O. F. Goulart and L. T. Kubota, An amperometric sensor based on electrochemically triggered reaction: Redox-active Ar-NO/Ar-NHOH from 4-nitrophthalonitrile-modified electrode for the low voltage cysteine detection, J. Electroanal. Chem., 2008, 612, 87–96.

    Article  CAS  Google Scholar 

  48. G. Chen, L. Y. Zhang and J. Wang, Miniaturized capillary electrophoresis system with a carbon nanotube microelectrode for rapid separation and detection of thiols, Talanta, 2004, 64, 1018–1023.

    Article  CAS  PubMed  Google Scholar 

  49. W. H. Wang, O. Rusin, X. Y. Xu, K. K. Kim, J. O. Escobedo, S. O. Fakayode, K. A. Fletcher, M. Lowry, C. M. Schowalter, C. M. Lawrence, F. R. Fronczek, I. M. Warner and R. M. Strongin, Detection of homocysteine and cysteine, J. Am. Chem. Soc., 2005, 127, 15949–15958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. H. Matsuura, Y. Sato, O. Niwa and F. Mizutani, Electrochemical enzyme immunoassay of a peptide hormone at picomolar levels, Anal. Chem., 2005, 77, 4235–4240.

    Article  CAS  PubMed  Google Scholar 

  51. M. Rafii, R. Elango, G. Courtney-Martin, J. D. House, L. Fisher and P. B. Pencharz, High-throughput and simultaneous measurement of homocysteine and cysteine in human plasma and urine by liquid chromatography-electro spray tandem mass spectrometry, Anal. Biochem., 2007, 371, 71–81.

    Article  CAS  PubMed  Google Scholar 

  52. H. L. Li, J. L. Fan, J. Y. Wang, M. Z. Tian, J. J. Du, S. G. Sun, P. P. Sun and X. J. Peng, A fluorescent chemodosimeter specific for cysteine: effective discrimination of cysteine from homocysteine, Chem. Commun., 2009, 5904–5906.

  53. P. Wang, J. Liu, X. Lv, Y. L. Liu, Y. Zhao and W. Guo, A Naphthalimide-Based Glyoxal Hydrazone for Selective Fluorescence Turn-On Sensing of Cys and Hcy, Org. Lett., 2012, 14, 520–523.

    Article  CAS  PubMed  Google Scholar 

  54. L. Y. Niu, Y. S. Guan, Y. Z. Chen, L. Z. Wu, C. H. Tung and Q. Z. Yang, BODIPY-Based Ratiometric Fluorescent Sensor for Highly Selective Detection of Glutathione over Cysteine and Homocysteine, J. Am. Chem. Soc., 2012, 134, 18928–18931.

    Article  CAS  PubMed  Google Scholar 

  55. X. F. Yang, Y. X. Guo and R. M. Strongin, Conjugate Addition/Cyclization Sequence Enables Selective and Simultaneous Fluorescence Detection of Cysteine and Homocysteine, Angew. Chem., Int. Ed., 2011, 50, 10690–10693.

    Article  CAS  Google Scholar 

  56. D. P. Li, J. F. Zhang, J. Cui, X. F. Ma, J. T. Liu, J. Y. Miao and B. X. Zhao, A ratiometric fluorescent probe for fast detection of hydrogen sulfide and recognition of biological thiols, Sens. Actuators, B, 2016, 234, 231–238.

    Article  CAS  Google Scholar 

  57. L. Yi, H. Y. Li, L. Sun, L. L. Liu, C. H. Zhang and Z. Xi, A Highly Sensitive Fluorescence Probe for Fast Thiol-Quantification Assay of Glutathione Reductase, Angew. Chem., Int. Ed., 2009, 48, 4034–4037.

    Article  CAS  Google Scholar 

  58. B. K. McMahon and T. Gunnlaugsson, Selective Detection of the Reduced Form of Glutathione (GSH) over the Oxidized (GSSG) Form Using a Combination of Glutathione Reductase and a Tb(III)-Cyclen Maleimide Based Lanthanide Luminescent ‘Switch On’ Assay, J. Am. Chem. Soc., 2012, 134, 10725–10728.

    Article  CAS  PubMed  Google Scholar 

  59. P. B. Viviana, C. A. Huerta-Aguilar, N. Singh and T. Pandiyan, Selective recognition of Cr3+ in multivitamin formulations in aqueous medium by fluorescent organicinorganic nanohybrids, Res. Chem. Intermed., 2018, 44, 3179–3197.

    Article  CAS  Google Scholar 

  60. C. A. Huerta-Aguilar, T. Pandiyan, P. Raj, N. Singh and R. Zanella, Fluorescent organic nanoparticles (FONs) for the selective recognition of Zn2+: Applications to multivitamin formulations in aqueous medium, Sens. Actuators, B, 2016, 223, 59–67.

    Article  CAS  Google Scholar 

  61. C. A. Huerta-Aguilar, P. Raj, P. Thangarasu and N. Singh, Fluorescent organic nanoparticles (FONs) for selective recognition of Al3+: application to bio-imaging for bacterial sample, RSC Adv., 2016, 6, 37944–37952.

    Article  CAS  Google Scholar 

  62. C. A. Huerta-Aguilar, T. Pandiyan, N. Singh and N. Jayanthi, Three novel input logic gates supported by fluorescence studies: Organic nanoparticles (ONPs) as chemo-sensor for detection of Zn2+ and Al3+ in aqueous medium, Spectrochim. Acta, Part A, 2015, 146, 142–150.

    Article  CAS  Google Scholar 

  63. C. A. H. Aguilar, A. B. P. Jimenez, A. R. Silva, N. Kaur, P. Thangarasu, J. M. V. Ramos and N. Singh, Organic-Inorganic Hybrid Nanoparticles for Bacterial Inhibition: Synthesis and Characterization of Doped and Undoped ONPs with Ag/Au NPs, Molecules, 2015, 20, 6002–6021.

    Article  CAS  PubMed  Google Scholar 

  64. A. Ravindran, M. Elavarasi, T. C. Prathna, A. M. Raichur, N. Chandrasekaran and A. Mukherjee, Selective colorimetric detection of nanomolar Cr(VI) in aqueous solutions using unmodified silver nanoparticles, Sens. Actuators, B, 2012, 166, 365–371.

    Article  CAS  Google Scholar 

  65. Y. P. Zhang, J. Chen, L. Y. Bai, X. M. Zhou and L. M. Wang, Gold Nanoparticle-based Optical Probe for Quick Colorimetric Visualization of Cysteine, J. Chin. Chem. Soc., 2010, 57, 972–975.

    Article  CAS  Google Scholar 

  66. A. Sugunan, C. Thanachayanont, J. Dutta and J. G. Hilborn, Heavy-metal ion sensors using chitosan-capped gold nanoparticles, Sci. Technol. Adv. Mater., 2005, 6, 335–340.

    Article  CAS  Google Scholar 

  67. E. Ide, S. Angata, A. Hirose and K. F. Kobayashi, Metal–metal bonding process using Ag metallo-organic nanoparticles, Acta Mater., 2005, 53, 2385–2393.

    Article  CAS  Google Scholar 

  68. C.-C. Shih, Y.-C. Chiu, W.-Y. Lee, J.-Y. Chen and W.-C. Chen, Conjugated Polymer Nanoparticles as Nano Floating Gate Electrets for High Performance Nonvolatile Organic Transistor Memory Devices, 2015, vol. 25, pp. 1511–1519.

  69. S. Devi, B. Singh, A. K. Paul and S. Tyagi, Highly sensitive and selective detection of trinitrotoluene using cysteinecapped gold nanoparticles, Anal. Methods, 2016, 8, 4398–4405.

    Article  CAS  Google Scholar 

  70. S. Xu, Y. Wang, Y. Sun, G. Shan, Y. Chen and Y. Liu, The detection of copper ions based on photothermal effect of cysteine modified Au nanorods, Sens. Actuators, B, 2017, 248, 761–768.

    Article  CAS  Google Scholar 

  71. S. Verma, S. S. Amritphale and S. Das, Surfaces, Multifunctional application of cytosine for the synthesis of hybrid homogenized nano-sized rare earth oxide (Re2O3) and rare earth oxycarbonate (Re2O2CO3) (Re=Nd, Sm) Adv. Material Microwave Irradiation, 2017, vol. 53, pp. 444–451.

  72. S. Verma, S. S. Amritphale and S. Das, Synchronising effect of microwave and cytosine for the synthesis of hybrid homogenised nanosized cerium oxide and cerium oxycarbonate hydrate material, J. Chem. Res., 2016, 40, 321–325.

    Article  CAS  Google Scholar 

  73. Y. Zhang and Q. Zhong, Probing the binding between norbixin and dairy proteins by spectroscopy methods, Food Chem., 2013, 139, 611–616.

    Article  CAS  PubMed  Google Scholar 

  74. S. Jiang, H.-Z. Liu, W.-L. Cai, A.-m. Bai, Y. Ouyang and Y.-J. Hu, Quasi-spherical silver nanoparticles with high dispersity and uniform sizes: preparation, characterization and bioactivity in their interaction with bovine serum albumin, Luminescence, 2016, 31, 1146–1151.

    Article  CAS  Google Scholar 

  75. A. Singh, A. Singh and N. Singh, A Cu(II) complex of an imidazolium-based ionic liquid: synthesis, X-ray structure and application in the selective electrochemical sensing of guanine, Dalton Trans., 2014, 43, 16283–16288.

    Article  CAS  PubMed  Google Scholar 

  76. V. D. Sotnikov, V. A. Zherdev and B. B. Dzantiev, Development and Application of a Label-Free Fluorescence Method for Determining the Composition of Gold Nanoparticle–Protein Conjugates, Int. J. Mol. Sci., 2015, 16, 907–923.

    Article  CAS  Google Scholar 

  77. M. Ahumada, E. Lissi, A. M. Montagut, F. Valenzuela-Henriquez, N. L. Pacioni and E. I. Alarcon, Association models for binding of molecules to nanostructures, Analyst, 2017, 142, 2067–2089.

    Article  CAS  PubMed  Google Scholar 

  78. G. A. Crosby and J. N. Demas, Measurement of photoluminescence quantum yields. Review, J. Phys. Chem., 1971, 75, 991–1024.

    Article  CAS  Google Scholar 

  79. K. Rurack and M. Spieles, Fluorescence Quantum Yields of a Series of Red and Near-Infrared Dyes Emitting at 600–1000 nm, Anal. Chem., 2011, 83, 1232–1242.

    Article  CAS  PubMed  Google Scholar 

  80. A. Balamurugan and H.-i. Lee, Aldoxime-Derived Water-Soluble Polymer for the Multiple Analyte Sensing: Consecutive and Selective Detection of Hg2+, Ag+, ClO–, and Cysteine in Aqueous Media, Macromolecules, 2015, 48, 3934–3940.

    Article  CAS  Google Scholar 

  81. X. Liu, D. Yang, W. Chen, L. Yang, F. Qi and X. Song, A redemitting fluorescent probe for specific detection of cysteine over homocysteine and glutathione with a large Stokes shift, Sens. Actuators, B, 2016, 234, 27–33.

    Article  CAS  Google Scholar 

  82. R. Na, M. Zhu, S. Fan, Z. Wang, X. Wu, J. Tang, J. Liu, Y. Wang and R. Hua, A Simple and Effective Ratiometric Fluorescent Probe for the Selective Detection of Cysteine and Homocysteine in Aqueous Media, Molecules, 2016, 21, 1023.

    Article  PubMed Central  CAS  Google Scholar 

  83. R. M. Jiang, H. Liu, M. Y. Liu, J. W. Tian, Q. Huang, H. Y. Huang, Y. Q. Wen, Q. Y. Cao, X. Y. Zhang and Y. Wei, A facile one-pot Mannich reaction for the construction of fluorescent polymeric nanoparticles with aggregationinduced emission feature and their biological imaging, Mater. Sci. Eng., C, 2017, 81, 416–421.

    Article  CAS  Google Scholar 

  84. X. Y. Zhang, K. Wang, M. Y. Liu, X. Q. Zhang, L. Tao, Y. W. Chen and Y. Wei, Polymeric AIE-based nanoprobes for biomedical applications: recent advances and perspectives, Nanoscale, 2015, 7, 11486–11508.

    Article  CAS  PubMed  Google Scholar 

  85. L. C. Mao, M. Y. Liu, R. M. Jiang, Q. Huang, Y. F. Dai, J. W. Tian, Y. G. Shi, Y. Q. Wen, X. Y. Zhang and Y. Wei, The one-step acetalization reaction for construction of hyperbranched and biodegradable luminescent polymeric nanoparticles with aggregation-induced emission feature, Mater. Sci. Eng., C, 2017, 80, 543–548.

    Article  CAS  Google Scholar 

  86. S. X. Yu, D. Z. Xu, Q. Wan, M. Y. Liu, J. W. Tian, Q. Huang, F. J. Deng, Y. Q. Wen, X. Y. Zhang and Y. Wei, Construction of biodegradable and biocompatible AIE-active fluorescent polymeric nanoparticles by Ce(IV)/HNO3 redox polymerization in aqueous solution, Mater. Sci. Eng., C, 2017, 78, 191–197.

    Article  CAS  Google Scholar 

  87. J. W. Tian, R. M. Jiang, P. Gao, D. Z. Xu, L. C. Mao, G. J. Zeng, M. Y. Liu, F. J. Deng, X. Y. Zhang and Y. Wei, Synthesis and cell imaging applications of amphiphilic AIE-active poly(amino acid)s, Mater. Sci. Eng., C, 2017, 79, 563–569.

    Article  CAS  Google Scholar 

  88. Q. Wan, R. M. Jiang, L. L. Guo, S. X. Yu, M. Y. Liu, J. W. Tian, G. Q. Liu, F. J. Deng, X. Y. Zhang and Y. Wei, Novel Strategy toward AIE-Active Fluorescent Polymeric Nanoparticles from Polysaccharides: Preparation and Cell Imaging, ACS Sustainable Chem. Eng., 2017, 5, 9955–9964.

    Article  CAS  Google Scholar 

  89. Q. Wan, M. Y. Liu, L. C. Mao, R. M. Jiang, D. Z. Xu, H. Y. Huang, Y. F. Dai, F. J. Deng, X. Y. Zhang and Y. Wei, Preparation of PEGylated polymeric nanoprobes with aggregation-induced emission feature through the combination of chain transfer free radical polymerization and multicomponent reaction: Self-assembly, characterization and biological imaging applications, Mater. Sci. Eng., C, 2017, 72, 352–358.

    Article  CAS  Google Scholar 

  90. X. Y. Zhang, S. Q. Wang, L. X. Xu, L. Feng, Y. Ji, L. Tao, S. X. Li and Y. Wei, Biocompatible polydopamine fluorescent organic nanoparticles: facile preparation and cell imaging, Nanoscale, 2012, 4, 5581–5584.

    Article  CAS  PubMed  Google Scholar 

  91. H. Y. Huang, D. Z. Xu, M. Y. Liu, R. M. Jiang, L. C. Mao, Q. Huang, Q. Wan, Y. Q. Wen, X. Y. Zhang and Y. Wei, Direct encapsulation of AIE-active dye with beta cyclodextrin terminated polymers: Self-assembly and biological imaging, Mater. Sci. Eng., C, 2017, 78, 862–867.

    Article  CAS  Google Scholar 

  92. Z. Long, M. Y. Liu, L. C. Mao, G. J. Zeng, Q. Huang, H. Y. Huang, F. J. Deng, Y. Q. Wan, X. Y. Zhang and Y. Wei, One-step synthesis, self-assembly and bioimaging applications of adenosine triphosphate containing amphiphilies with aggregation-induced emission feature, Mater. Sci. Eng., C, 2017, 73, 252–256.

    Article  CAS  Google Scholar 

  93. N. Bel Haj Mohamed, N. Ben Brahim, R. Mrad, M. Haouari, R. Ben Chaâbane and M. Negrerie, Use of MPA-capped CdS quantum dots for sensitive detection and quantification of Co2+ ions in aqueous solution, Anal. Chim. Acta, 2018, 1028, 50–58.

    Article  CAS  PubMed  Google Scholar 

  94. M. R. Smith, M. G. Boenzli, V. Hindagolla, J. Ding, J. M. Miller, J. E. Hutchison, J. A. Greenwood, H. Abeliovich and A. T. Bakalinsky, Identification of gold nanoparticleresistant mutants of Saccharomyces cerevisiae suggests a role for respiratory metabolism in mediating toxicity, Appl. Environ. Microbiol., 2013, 79, 728–733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Z. V. Feng, I. L. Gunsolus, T. A. Qiu, K. R. Hurley, L. H. Nyberg, H. Frew, K. P. Johnson, A. M. Vartanian, L. M. Jacob, S. E. Lohse, M. D. Torelli, R. J. Hamers, C. J. Murphy and C. L. Haynes, Impacts of gold nanoparticle charge and ligand type on surface binding and toxicity to Gram-negative and Gram-positive bacteria, Chem. Sci., 2015, 6, 5186–5196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. S. Chopra, J. Singh, N. Singh and N. Kaur, Fluorescent organic nanoparticles of tripodal receptor as sensors for HSO4- in aqueous medium: application to real sample analysis, Anal. Methods, 2014, 9030–9036.

  97. W. Yang and W. J. Mortier, The use of global and local molecular-parameters for the analysis of the gas-phase basicity of amines, J. Am. Chem. Soc., 1986, 108, 5708–5711.

    Article  CAS  PubMed  Google Scholar 

  98. N.W. Alcock, P. Moore and H. A. A. Omar, Synthesis of a pyridine-containing tetra-aza macrocycle, 7-methyl-3,7,11,17-tetraazabicyclo 11.3.1 heptadeca-1(17),13,15-triene (L-1), and characterization of its nickel(II), copper(II), and zinc(II) complexes - reduction of the pyridine ring of Ni(L-1)2+ to give Ni (L-2)2+ (L-2=7-methyl-3,7,11,17-tetra-azabicyclo 11.3.1 heptadecane), and characterization of Ni(L-2)2+ by X-ray crystallographyp, J. Chem. Soc., Dalton Trans., 1986, 985–989.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pandiyan Thangarasu.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c9pp00060g

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huerta-Aguilar, C.A., Ramírez-Guzmán, B., Thangarasu, P. et al. Simultaneous recognition of cysteine and cytosine using thiophene-based organic nanoparticles decorated with Au NPs and bio-imaging of cells. Photochem Photobiol Sci 18, 1761–1772 (2019). https://doi.org/10.1039/c9pp00060g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c9pp00060g

Navigation