Skip to main content
Log in

Excited-state intramolecular proton transfer in a bioactive flavonoid provides fluorescence observables for recognizing its engagement with target proteins

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A benzothiophene-substituted chromenone with promising activity against Leishmania and Trypanosoma species exhibits peculiar fluorescence properties useful for identifying its complexes with target proteins in the microorganism proteomes. The emission spectra, anisotropy and time profiles of this flavonoid strongly change when moving from the free to the protein-bound forms. The same two types of emission are observed in organic solvents and their mixtures with water, with the relative band intensities depending on the solvent ability to establish hydrogen bonds with the solute. The regular emission prevails in protic solvents, while in aprotic solvents the anomalously red-shifted emission occurs from a zwitterionic tautomeric form, produced in the excited state by proton transfer within the intramolecularly H-bonded form. This interpretation finds support from an experimental and theoretical investigation of the conformational preferences of this compound in the ground and lowest excited state, with a focus on the relative twisting about the chromenone–benzothiophene interconnecting bond. An analysis of the absorption and emission spectra and of the photophysical properties of the two emitting tautomers highlights the relevance of the local microenvironment, particularly of the intra- and intermolecular hydrogen bonds in which this bioactive compound is involved, in determining both its steady-state and time-resolved fluorescence behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Ponterini, Fluorescence observables and enzyme kinetics in the investigation of PPI modulation by small molecules: detection, mechanistic insight, and functional consequences, in Disruption of protein-protein interfaces. In search of new inhibitors, ed. S. Mangani, Springer, Heidelberg, 2013, pp. 135–158, ISBN 9783642379987.

    Book  Google Scholar 

  2. C. F. Chignell, Fluorescence spectroscopy as a tool for studying drug interactions with biological systems, in Fluorescence techniques in cell biology, ed. A. A. Thaer and M. Sernetz, Springer, Berlin, Heidelberg, 1973, pp. 345–357.

    Book  Google Scholar 

  3. J. Han and K. Burgess, Fluorescent Indicators for Intracellular pH, Chem. Rev., 2010, 110, 2709–2728.

    Article  CAS  Google Scholar 

  4. Solvent and Environmental Effects, in Principles of fluorescence spectroscopy, ed. J. R. Lakowicz, Springer, Boston, 3rd edn, 2006, ch. 6.

  5. S. Fery-Forgues, J.-P. Fayet and A. Lopez, Drastic changes in the fluorescence properties of NBD probes with the polarity of the medium: involvement of a TICT state?, J. Photochem. Photobiol., A, 1993, 70, 229–243.

  6. N. Barooah, J. Mohanty, H. Pal, S. K. Sarkar, T. Mukherjee and A. C. Bhasikuttan, pH and temperature dependent relaxation dynamics of Hoechst-33258: a time resolved fluorescence study, Photochem. Photobiol. Sci., 2011, 10, 35–41.

    Article  CAS  Google Scholar 

  7. C. Borsari, M. D. Jiménez-Antón, J. Eick, E. Bifeld, J. J. Torrado, A. I. Olías-Molero, M. J. Corral, N. Santarem, C. Baptista, L. Severi, S. Gul, M. Wolf, M. Kuzikov, B. Ellinger, J. Reinshagen, G. Witt, P. Gribbon, M. Kohler, O. Keminer, B. Behrens, P. Linciano, A. Tait, L. Costantino, G. Ponterini, P. Tejera Nevado, D. Zander-Dinse, J. Clos, C. Franco, C. Moraes, J. M. Alunda, A. Cordeiro-da-Silva, S. Ferrari and M. P. Costi, Discovery of a benzothiopheneflavonol halting miltefosine and antimonial drug resistance in Leishmania parasites through the application of medicinal chemistry, screening and genomics, Eur. J. Med. Chem., submitted.

  8. P. F. Barbara, P. K. Walsh and L. E. Brus, Picosecond kinetic and vibrationally resolved spectroscopic studies of intramolecular excited-state hydrogen atom transfer, J. Phys. Chem., 1989, 93, 29–34.

    Article  CAS  Google Scholar 

  9. P. K. Sengupta and M. Kasha, Excited state proton-transfer spectroscopy of 3-hydroxyflavone and quercetin, Chem. Phys. Lett., 1079, 68, 382–385.

    Article  Google Scholar 

  10. B. P. Pahari, S. Chaudhuri, S. Chakraborty and P. K. Sengupta, Ground and excited state proton transfer of the bioactive plant flavonol robinetin in a protein environment: spectroscopic and molecular modeling studies, J. Phys. Chem. B, 2015, 119, 2533–2545.

    Article  CAS  Google Scholar 

  11. G. A. Brucker, T. C. Swinney and D. F. Kelley, Proton-transfer and solvent polarization dynamics in 3-hydroxyflavone, J. Phys. Chem., 1991, 95, 3190–3195.

    Article  CAS  Google Scholar 

  12. B. J. Schwartz, L. A. Peteanu and C. B. Harris, Direct observation of fast proton transfer: femtosecond photophysics of 3-hydroxyflavone, J. Phys. Chem., 1992, 96, 3591–3598.

    Article  CAS  Google Scholar 

  13. S. Ameer-Beg, S. M. Ormson, R. G. Brown, P. Matousek, M. Towrie, E. T. J. Nibbering, P. Foggi and F. V. R. Neuwahl, Ultrafast measurements of excited state intramolecular proton transfer (ESIPT) in room temperature solutions of 3-hydroxyflavone and derivatives, J. Phys. Chem. A, 2001, 105, 3709–3718.

    Article  CAS  Google Scholar 

  14. B. M. Mohapatra and A. K. Mishra, Photophysical Behavior of Fisetin in Dimyristoylphosphatidylcholine Liposome Membrane, J. Phys. Chem. B, 2011, 115, 9962–9970.

    Article  CAS  Google Scholar 

  15. A. J. G. Strandjord, D. E. Smith and P. F. Barbara, Structural effects on the proton-transfer kinetics of 3-hydroxyflavones, J. Phys. Chem., 1985, 89, 2362–2366.

    Article  CAS  Google Scholar 

  16. G. A. Brucker and D. F. Kelley, Role of phenyl torsion in the excited-state dynamics of 3-hydroxyflavone, J. Phys. Chem., 1988, 92, 3805–3809.

    Article  CAS  Google Scholar 

  17. D. F. Eaton, Reference materials for fluorescence measurement, Pure Appl. Chem., 1988, 60, 1107–1114.

    Article  CAS  Google Scholar 

  18. A. A. Granovsky, Firefly version 8.2.0, http://www.classic.chem.msu.su/gran/firefly/index.html.

  19. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis and J. A. Montgomery, General atomic and molecular electronic structure system, J. Comput. Chem., 1993, 14, 1347–1363.

    Article  CAS  Google Scholar 

  20. M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T. P. Straatsma, H. J. J. van Dam, D. Wang, J. Nieplocha, E. Apra, T. L. Windus and W. A. de Jong, NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations, Comput. Phys. Commun., 2010, 181, 1477–1489.

    Article  CAS  Google Scholar 

  21. A. V. Marenich, C. J. Cramer, D. G. Truhlar, C. A. Guido, B. Mennucci, G. Scalmani and M. Frisch, Practical computation of electronic excitation in solution: vertical excitation model, Chem. Sci., 2011, 2, 2143–2161.

    Article  CAS  Google Scholar 

  22. A. V. Marenich, C. J. Cramer and D. G. Truhlar, Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions, J. Phys. Chem. B, 2009, 113, 6378–6396.

    Article  CAS  Google Scholar 

  23. J. J. P. Stewart, L. P. Davis and L. W. Burggraf, Semiempirical calculations of molecular trajectories: method and applications to some simple molecular systems, J. Comput. Chem., 1987, 8, 1117–1123.

    Article  CAS  Google Scholar 

  24. M. Dominik, Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods, Cambridge Univerity Press, 2012.

  25. O. Dangles, C. Dufour, C. Manach, C. Morand and C. Remesy, Binding of flavonoids to plasma proteins, Methods Enzymol., 2001, 335, 319–333.

    Article  CAS  Google Scholar 

  26. A. Sytnik, D. Gormin and M. Kasha, Interplay between excited-state intramolecular proton transfer and charge transfer in flavonols and their use as protein-binding-site fluorescence probes, Proc. Natl. Acad. Sci. U. S. A., 1994, 91, 11968–11972.

    Article  CAS  Google Scholar 

  27. D. McMorrow and M. Kasha, Intramolecular excited-state proton transfer in 3-hydroxyflavone. Hydrogen-bonding solvent perturbations, J. Phys. Chem., 1984, 88, 2235–2243.

    Article  CAS  Google Scholar 

  28. V. G. Kontogianni, P. Charisiadis, A. Primikyri, C. G. Pappas, V. Exarchou, A. G. Tzakosa and I. P. Gerothanassis, Hydrogen bonding probes of phenol –OH groups, Org. Biomol. Chem., 2013, 11, 1013–1025.

    Article  CAS  Google Scholar 

  29. B. P. Pahari, S. Chakraborty and P. K. Sengupta, Encapsulation of 3-hydroxyflavone in γ-cyclodextrin nanocavities: Excited state proton transfer fluorescence and molecular docking studies, J. Mol. Struct., 2011, 1006, 483–488.

    Article  CAS  Google Scholar 

  30. S. Höfener, P. C. Kooijman, J. Groen, F. Arieseb and L. Visscher, Fluorescence behavior of (selected) flavonols: a combined experimental and computational study, Phys. Chem. Chem. Phys., 2013, 15, 12572–12581.

    Article  Google Scholar 

  31. T. Yatsuhashi and H. Inoue, Molecular mechanism of radiationless deactivation of aminoanthraquinones through intermolecular hydrogen-bonding interaction with alcohols and hydroperoxides, J. Phys. Chem. A, 1997, 101, 8166–8173.

    Article  CAS  Google Scholar 

  32. M. Martin, Hydrogen bond effects on radiationless electronic transitions in xanthenes dyes, Chem. Phys. Lett., 1975, 35, 105–111.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glauco Ponterini.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c9pp00026g

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanossi, D., Caselli, M., Pavesi, G. et al. Excited-state intramolecular proton transfer in a bioactive flavonoid provides fluorescence observables for recognizing its engagement with target proteins. Photochem Photobiol Sci 18, 2270–2280 (2019). https://doi.org/10.1039/c9pp00026g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c9pp00026g

Navigation