Skip to main content
Log in

Effect of charge transfer and structural rigidity on divergent luminescence response of a metal organic framework towards different metal ions: luminescence lifetime decay experiments and DFT calculations

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

We have thoroughly studied the luminescence behaviour of a cadmium based MOF, [Cd(C12N2H8) (C7N1O4H3)] {C12N2H8 = 1,10-phenanthroline, C7N1O4H3 = 2,5-pyridine dicarboxylate}, 1. Both steadystate and time-resolved luminescence spectroscopic experiments were performed to understand the dissimilar responses of compound 1 towards different metal ions in aqueous medium. Upon excitation at 280 nm, compound 1 showed a luminescence spectrum centered at 365 nm, which exhibited a threefold turn-on in the presence of a trace amount of Zn2+ in aqueous solution, whereas in the presence of Co2+, Hg2+, Ni2+, Fe2+ and Cu2+ the luminescence of compound 1 got largely quenched. Compound 1 did not show any response in the presence of other common metal ions such as K+, Mg2+, Na+, Mn2+, and Cr3+. By analysing all the experimental results, we successfully explained the versatile luminescence behaviour of compound 1. The turn-on of luminescence in the presence of Zn2+ ions was due to coordination bond formation and enhancement of the rigidity of compound 1 which resulted in the reduction of non-radiative decay processes to a large extent. The quenching of luminescence in the presence of transition metal ions was found to be static in nature, and was due to the possibility of ligand to metal charge transfer using the vacant d-orbital of the metal ions. In the case of Hg2+ which is a closed cell heavy metal ion, the quenching of luminescence was also static in nature and was due to a two-way charge transfer mechanism. We have also performed density functional theory calculations and obtained supportive results for the proposed mechanisms of luminescence turn-on and quenching. Moreover, compound 1 could be established as a selective and efficient sensor of Zn2+ in aqueous solution even in the presence of Cd2+ and other metal ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Serroni, A. Juris, S. Campagna, M. Venturi, G. Denti and V. Balzani, Tetranuclear Bimetallic Complexes of Ruthenium, Osmium, Rhodium, and Iridium. Synthesis, Absorption Spectra, Luminescence, and Electrochemical Properties, J. Am. Chem. Soc., 1994, 116, 9086.

    Article  CAS  Google Scholar 

  2. Y. Chi and P.-T. Chou, Contemporary progresses on neutral, highly emissive Os(ii) and Ru(ii) complexes, Chem. Soc. Rev., 2007, 36, 1421.

    Article  CAS  PubMed  Google Scholar 

  3. W.-Y. Wong and C.-L. Ho, Heavy metal organometallic electrophosphors derived from multi-component chromophores, Coord. Chem. Rev., 2009, 253, 1709.

    Article  CAS  Google Scholar 

  4. V. W.-W. Yam and K. M.-C. Wong, Luminescent metal complexes of d6, d8 and d10 transition metal centres, Chem. Commun., 2011, 47, 11579.

    Article  CAS  Google Scholar 

  5. S.-W. Lai, M. C.-W. Chan, T.-C. Cheung, S.-M. Peng and C.-M. Che, Probing d8–d8 Interactions in Luminescent Mono- and Binuclear Cyclometalated Platinum(II) Complexes of 6-Phenyl-2,2′-bipyridines, Inorg. Chem., 1999, 38, 4046.

    Article  CAS  Google Scholar 

  6. V. W.-W. Yam and E. C.-C. Cheng, Highlights on the recent advances in gold chemistry—a photophysical perspective, Chem. Soc. Rev., 2008, 37, 1806.

    Article  CAS  PubMed  Google Scholar 

  7. J. M. Berg and Y. Shi, The Galvanization of Biology: A Growing Appreciation for the Roles of Zinc, Science, 1996, 271, 1081.

    Article  CAS  PubMed  Google Scholar 

  8. X. Xie and T. G. Smart, A physiological role for endogenous zinc in rat hippocampal synaptic neurotransmission, Nature, 1991, 349, 521.

    Article  CAS  PubMed  Google Scholar 

  9. S. A. Ingale and F. Seela, A Ratiometric Fluorescent On–Off Zn2+ Chemosensor Based on a Tripropargylamine Pyrene Azide Click Adduct, J. Org. Chem., 2012, 77, 9352.

    Article  CAS  PubMed  Google Scholar 

  10. M. R. Broadley, P. J. White, J. P. Hammond, I. Zelko and A. Lux, Zinc in plants, New Phytol., 2007, 173, 677.

    Article  CAS  PubMed  Google Scholar 

  11. C. Chasapis, A. C. Loutsidou, C. Spiliopoulou and M. Stefanidou, Zinc and human health: An update, Arch. Toxicol., 2012, 86, 521.

    Article  CAS  PubMed  Google Scholar 

  12. B. L. Vallee and K. H. Falchuk, The biochemical basis of zinc physiology, Physiol. Rev., 1993, 73, 79.

    Article  CAS  PubMed  Google Scholar 

  13. K. Komatsu, Y. Urano, H. Kojima and T. Nagano, Development of an Iminocoumarin-Based Zinc Sensor Suitable for Ratiometric Fluorescence Imaging of Neuronal Zinc, J. Am. Chem. Soc., 2007, 129, 13447.

    Article  CAS  PubMed  Google Scholar 

  14. A. Bush, W. Pettingell, G. Multhaup, M. d. Paradis, J. Vonsattel, J. Gusella, K. Beyreuther, C. Masters and R. Tanzi, Rapid induction of Alzheimer A beta amyloid formation by zinc, Science, 1994, 265, 1464.

    Article  CAS  PubMed  Google Scholar 

  15. J.-Y. Koh, S. W. Suh, B. J. Gwag, Y. Y. He, C. Y. Hsu and D. W. Choi, The Role of Zinc in Selective Neuronal Death After Transient Global Cerebral Ischemia, Science, 1996, 272, 1013.

    Article  CAS  PubMed  Google Scholar 

  16. C. J. Frederickson, M. D. Hernandez and J. F. McGinty, Translocation of zinc may contribute to seizure-induced death of neurons, Brain Res., 1989, 480, 317.

    Article  CAS  PubMed  Google Scholar 

  17. Y. Liu, N. Zhang, Y. Chen and L.-H. Wang, Fluorescence Sensing and Binding Behavior of Aminobenzenesulfonamidoquinolino-β-cyclodextrin to Zn2+, Org. Lett., 2007, 9, 315.

    Article  CAS  PubMed  Google Scholar 

  18. E. Kimura and T. Koike, Recent development of zinc-fluorophores, Chem. Soc. Rev., 1998, 27, 179.

    Article  CAS  Google Scholar 

  19. P. Jiang and Z. Guo, Fluorescent detection of zinc in biological systems: recent development on the design of chemosensors and biosensors, Coord. Chem. Rev., 2004, 248, 205.

    Article  CAS  Google Scholar 

  20. F. Zapata, A. Caballero, A. Espinosa, A. Tárraga and P. Molina, A Simple but Effective Ferrocene Derivative as a Redox, Colorimetric, and Fluorescent Receptor for Highly Selective Recognition of Zn2+ Ions, Org. Lett., 2007, 9, 2385.

    Article  CAS  PubMed  Google Scholar 

  21. J. J. Ma, J. W. Zhang, X. Du, X. Lei and J. C. Li, Solidified floating organic drop microextraction for determination of trace amounts of zinc in water samples by flame atomic absorption spectrometry, Microchim. Acta, 2010, 168, 153.

    Article  CAS  Google Scholar 

  22. H. Vanhoe, C. Vandecasteele, J. Versieck and R. Dams, Determination of iron, cobalt, copper, zinc, rubidium, molybdenum, and cesium in human serum by inductively coupled plasma mass spectrometry, Anal. Chem., 1989, 61, 1851.

    Article  CAS  PubMed  Google Scholar 

  23. R. Ansari, A. F. Delavar and A. Mohammad-khah, Solidstate ion selective electrode based on polypyrrole conducting polymer nanofilm as a new potentiometric sensor for Zn2+ ion, J. Solid State Electrochem., 2012, 16, 3315.

    Article  CAS  Google Scholar 

  24. V. Gupta, D. Chauhan, V. Saini, S. Agarwal, M. Antonijevic and H. Lang, A Porphyrin Based Potentiometric Sensor for Zn2+ Determination, Sensors, 2003, 3, 223.

    Article  CAS  Google Scholar 

  25. M. Shamsipur, S. Rouhani, M. R. Ganjali, H. Sharghi and H. Eshghi, Zinc-selective membrane potentiometric sensor based on a recently synthesized benzo-substituted macrocyclic diamide, Sens. Actuators, B, 1999, 59, 30.

    Article  CAS  Google Scholar 

  26. M. Abbasi, Z. Ibupoto, M. Hussain, Y. Khan, A. Khan, O. Nur and M. Willander, Potentiometric Zinc Ion Sensor Based on Honeycomb-Like NiO Nanostructures, Sensors, 2012, 12, 15424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. A. Dueraning, P. Kanatharana, P. Thavarungkul and W. Limbut, An environmental friendly electrode and extended cathodic potential window for anodic stripping voltammetry of zinc detection, Electrochim. Acta, 2016, 221, 133.

    Article  CAS  Google Scholar 

  28. S. Sarkar and R. Shunmugam, Unusual Red Shift of the Sensor While Detecting the Presence of Cd2+ in Aqueous Environment, ACS Appl. Mater. Interfaces, 2013, 5, 7379.

    Article  CAS  PubMed  Google Scholar 

  29. H. Kenjiro, M. Yasuaki, U. Yasuteru, T. Takuya and N. Tetsuo, Design and Synthesis of a Highly Sensitive Off–On Fluorescent Chemosensor for Zinc Ions Utilizing Internal Charge Transfer, Chem.Eur. J., 2010, 16, 568.

    Article  CAS  Google Scholar 

  30. W. Wang, J. Yang, R. Wang, L. Zhang, J. Yu and D. Sun, Luminescent Terbium-Organic Framework Exhibiting Selective Sensing of Nitroaromatic Compounds (NACs), Cryst. Growth Des., 2015, 15, 2589.

    Article  CAS  Google Scholar 

  31. X. Luo, X. Zhang, Y. Duan, X. Wang and J. Zhao, A novel luminescent Pb(ii) - organic framework exhibiting a rapid and selective detection of trace amounts of NACs and Fe3+ with excellent recyclability, Dalton Trans., 2017, 46, 6303.

    Article  CAS  PubMed  Google Scholar 

  32. H. Xu, H.-C. Hu, C.-S. Cao and B. Zhao, Lanthanide Organic Framework as a Regenerable Luminescent Probe for Fe3+, Inorg. Chem., 2015, 54, 4585.

    Article  CAS  PubMed  Google Scholar 

  33. R. Lv, J. Wang, Y. Zhang, H. Li, L. Yang, S. Liao, W. Gu and X. Liu, An amino-decorated dual-functional metal-organic framework for highly selective sensing of Cr(iii) and Cr(vi) ions and detection of nitroaromatic explosives, J. Mater. Chem. A, 2016, 4, 15494.

    Article  CAS  Google Scholar 

  34. Y. Cui, Y. Yue, G. Qian and B. Chen, Luminescent Functional Metal–Organic Frameworks, Chem. Rev., 2012, 112, 1126.

    Article  CAS  PubMed  Google Scholar 

  35. P. Mahata, S. K. Mondal, D. K. Singha and P. Majee, Luminescent rare-earth-based MOFs as optical sensors, Dalton Trans., 2017, 46, 301.

    Article  CAS  PubMed  Google Scholar 

  36. F.-Y. Yi, D. Chen, M.-K. Wu, L. Han and H.-L. Jiang, Chemical Sensors Based on Metal–Organic Frameworks, ChemPlusChem, 2016, 81, 675.

    Article  CAS  PubMed  Google Scholar 

  37. Y. Zhang, S. Yuan, G. Day, X. Wang, X. Yang and H.-C. Zhou, Luminescent sensors based on metal-organic frameworks, Coord. Chem. Rev., 2018, 354, 28.

    Article  CAS  Google Scholar 

  38. H. Xu, C. S. Cao, X. M. Kang and B. Zhao, Lanthanidebased metal-organic frameworks as luminescent probes, Dalton Trans., 2016, 45, 18003.

    Article  CAS  PubMed  Google Scholar 

  39. W. P. Lustig, S. Mukherjee, N. D. Rudd, A. V. Desai, J. Li and S. K. Ghosh, Metal-organic frameworks: functional luminescent and photonic materials for sensing applications, Chem. Soc. Rev., 2017, 46, 3242.

    Article  CAS  PubMed  Google Scholar 

  40. D. K. Singha, P. Majee, S. K. Mondal and P. Mahata, Selective Luminescence-Based Detection of Cd2+ and Zn2+ Ions in Water Using a Proton-Transferred Coordination Polymer-Amine Conjugate Pair, ChemistrySelect, 2017, 2, 3388.

    Article  CAS  Google Scholar 

  41. W. Liu, J. Xie, L. Zhang, M. A. Silver and S. Wang, A hydrolytically stable uranyl organic framework for highly sensitive and selective detection of Fe3+ in aqueous media, Dalton Trans., 2018, 47, 649.

    Article  CAS  PubMed  Google Scholar 

  42. W. Liu, Y. Wang, Z. Bai, Y. Li, Y. Wang, L. Chen, L. Xu, J. Diwu, Z. Chai and S. Wang, Hydrolytically Stable Luminescent Cationic Metal Organic Framework for Highly Sensitive and Selective Sensing of Chromate Anions in Natural Water Systems, ACS Appl. Mater. Interfaces, 2017, 9, 16448.

    Article  CAS  PubMed  Google Scholar 

  43. M. T. Nath, K. Avishek, S. Shivani and S. K. Ghosh, Metal-Organic Frameworks (MOFs) as Functional Supramolecular Architectures for Anion Recognition and Sensing, Chem. Rec., 2018, 18, 154.

    Article  CAS  Google Scholar 

  44. D. K. Singha, S. Bhattacharya, P. Majee, S. K. Mondal, M. Kumar and P. Mahata, Optical detection of submicromolar levels of nitro explosives by a submicron sized metalorganic phosphor material, J. Mater. Chem. A, 2014, 2, 20908.

    Article  CAS  Google Scholar 

  45. P. Majee, D. K. Singha, S. K. Mondal and P. Mahata, Solvent Dependent Luminescence Sensing of Nitro-Explosives by a Terbium-Based Metal-Organic Complex, ChemistrySelect, 2018, 3, 683.

    Article  CAS  Google Scholar 

  46. D. K. Singha, P. Majee, S. K. Mondal and P. Mahata, A Eu-Doped Y-Based Luminescent Metal-Organic Framework as a Highly Efficient Sensor for Nitroaromatic Explosives, Eur. J. Inorg. Chem., 2015, 1390.

  47. B. Chen, Y. Yang, F. Zapata, G. Lin, G. Qian and E. B. Lobkovsky, Luminescent Open Metal Sites within a Metal–Organic Framework for Sensing Small Molecules, Adv. Mater., 2007, 19, 1693.

    Article  CAS  Google Scholar 

  48. J.-M. Zhou, W. Shi, N. Xu and P. Cheng, Highly Selective Luminescent Sensing of Fluoride and Organic Small-Molecule Pollutants Based on Novel Lanthanide Metal–Organic Frameworks, Inorg. Chem., 2013, 52, 8082.

    Article  CAS  PubMed  Google Scholar 

  49. K. Vikrant, D. C. W. Tsang, N. Raza, B. S. Giri, D. Kukkar and K.-H. Kim, Potential Utility of Metal–Organic Framework-Based Platform for Sensing Pesticides, ACS Appl. Mater. Interfaces, 2018, 10, 8797.

    Article  CAS  PubMed  Google Scholar 

  50. D. K. Singha, P. Majee, S. K. Mondal and P. Mahata, Highly Selective Aqueous Phase Detection of Azinphos-Methyl Pesticide in ppb Level Using a Cage-Connected 3D MOF, ChemistrySelect, 2017, 2, 5760.

    Article  CAS  Google Scholar 

  51. X.-D. Zhu, K. Zhang, Y. Wang, W.-W. Long, R.-J. Sa, T.-F. Liu and J. Lü, Fluorescent Metal–Organic Framework (MOF) as a Highly Sensitive and Quickly Responsive Chemical Sensor for the Detection of Antibiotics in Simulated Wastewater, Inorg. Chem., 2018, 57, 1060.

    Article  CAS  PubMed  Google Scholar 

  52. Z.-Q. Yao, G.-Y. Li, J. Xu, T.-L. Hu and X.-H. Bu, A Water-Stable Luminescent ZnII Metal-Organic Framework as Chemosensor for High-Efficiency Detection of CrVI-Anions (Cr2O72− and CrO42−) in Aqueous Solution, Chem.Eur. J., 2018, 24, 3192.

    Article  CAS  PubMed  Google Scholar 

  53. D. K. Singha, P. Majee, S. Mandal, S. K. Mondal and P. Mahata, Detection of Pesticides in Aqueous Medium and in Fruit Extracts Using a Three-Dimensional Metal–Organic Framework: Experimental and Computational Study, Inorg. Chem., 2018, 57, 12155.

    Article  CAS  PubMed  Google Scholar 

  54. S. Chand, M. Mondal, S. C. Pal, A. Pal, S. Maji, D. Mandal and M. C. Das, Two azo-functionalized luminescent 3D Cd (ii) MOFs for highly selective detection of Fe3+ and Al3+, New J. Chem., 2018, 42, 12865.

    Article  CAS  Google Scholar 

  55. X.-G. Liu, C.-L. Tao, H.-Q. Yu, B. Chen, Z. Liu, G.-P. Zhu, Z. Zhao, L. Shen and B. Z. Tang, A new luminescent metal–organic framework based on dicarboxyl-substituted tetraphenylethene for efficient detection of nitro-containing explosives and antibiotics in aqueous media, J. Mater. Chem. C, 2018, 6, 2983.

    Article  CAS  Google Scholar 

  56. M. Mon, X. Qu, J. Ferrando-Soria, I. Pellicer-Carreno, A. Sepulveda-Escribano, E. V. Ramos-Fernandez, J. C. Jansen, D. Armentano and E. Pardo, Fine-tuning of the confined space in microporous metal-organic frameworks for efficient mercury removal, J. Mater. Chem. A, 2017, 5, 20120.

    Article  CAS  Google Scholar 

  57. Q. Tang, S. Liu, Y. Liu, J. Miao, S. Li, L. Zhang, Z. Shi and Z. Zheng, Cation Sensing by a Luminescent Metal–Organic Framework with Multiple Lewis Basic Sites, Inorg. Chem., 2013, 52, 2799.

    Article  CAS  PubMed  Google Scholar 

  58. S. A. A. Razavi, M. Y. Masoomi and A. Morsali, Double Solvent Sensing Method for Improving Sensitivity and Accuracy of Hg(II) Detection Based on Different Signal Transduction of a Tetrazine-Functionalized Pillared Metal–Organic Framework, Inorg. Chem., 2017, 56, 9646.

    Article  CAS  PubMed  Google Scholar 

  59. B. Wang, Q. Yang, C. Guo, Y. Sun, L.-H. Xie and J.-R. Li, Stable Zr(IV)-Based Metal–Organic Frameworks with Predesigned Functionalized Ligands for Highly Selective Detection of Fe(III) Ions in Water, ACS Appl. Mater. Interfaces, 2017, 9, 10286.

    Article  CAS  PubMed  Google Scholar 

  60. J. Luo, B. S. Liu, C. Cao and F. Wei, Neodymium(III) organic frameworks (Nd-MOF) as near infrared fluorescent probe for highly selectively sensing of Cu2+, Inorg. Chem. Commun., 2017, 76, 18.

    Article  CAS  Google Scholar 

  61. L. Zhou, K. Zhao, Y.-J. Hu, X.-C. Feng, P.-D. Shi and H.-G. Zheng, A bifunctional photoluminescent metal−organic framework for detection of Fe3+ ion and nitroaromatics, Inorg. Chem. Commun., 2018, 89, 68.

    Article  CAS  Google Scholar 

  62. Y. Wei, H. Hou, L. Li, Y. Fan and Y. Zhu, From Dicarboxylic Acid to Tetranuclear Metallamacrocyclic Complex and 1D and 2D Polymers, Cryst. Growth Des., 2005, 5, 1405.

    Article  CAS  Google Scholar 

  63. A. M. Brouwer, Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report), Pure Appl. Chem., 2011, 83, 2213.

    Article  CAS  Google Scholar 

  64. B. B. Craig, J. Kirk and M. A. J. Rodgers, Fluorescence decay parameters for pyrene (S1) in micellar and homogeneous liquid dispersions, Chem. Phys. Lett., 1977, 49, 437.

    Article  CAS  Google Scholar 

  65. H. A. Benesi and J. H. Hildebrand, A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons, J. Am. Chem. Soc., 1949, 71, 2703.

    Article  CAS  Google Scholar 

  66. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer, US, 2007.

  67. A. Ganguly, B. K. Paul, S. Ghosh, S. Kar and N. Guchhait, Selective fluorescence sensing of Cu(ii) and Zn(ii) using a new Schiff base-derived model compound: naked eye detection and spectral deciphering of the mechanism of sensory action, Analyst, 2013, 138, 6532.

    Article  CAS  PubMed  Google Scholar 

  68. H. Masuhara, H. Shioyama, T. Saito, K. Hamada, S. Yasoshima and N. Mataga, Fluorescence quenching mechanism of aromatic hydrocarbons by closed-shell heavy metal ions in aqueous and organic solutions, J. Phys. Chem., 1984, 88, 5868.

    Article  CAS  Google Scholar 

  69. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian 16, Wallingford, CT, 2016.

  70. A. Hens, A. Maity and K. K. Rajak, N, N coordinating schiff base ligand acting as a fluorescence sensor for zinc(II) and colorimetric sensor for copper(II), and zinc(II) in mixed aqueous media, Inorg. Chim. Acta, 2014, 423, 408.

    Article  CAS  Google Scholar 

  71. C. Yuan, S. Li, Y. Wu, L. Lu and M. Zhu, Zn(II)-selective and sensitive fluorescent chemosensor based on steric constrains and inhibition of ESIPT, Sens. Actuators, B, 2017, 242, 1035.

    Article  CAS  Google Scholar 

  72. W.-K. Dong, S. F. Akogun, Y. Zhang, Y.-X. Sun and X.-Y. Dong, A reversible “turn-on” fluorescent sensor for selective detection of Zn2+, Sens. Actuators, B, 2017, 238, 723.

    Article  CAS  Google Scholar 

  73. Y. Lv, M. Cao, J. Li and J. Wang, A Sensitive Ratiometric Fluorescent Sensor for Zinc(II) with High Selectivity, Sensors, 2013, 13, 3131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. A. Thangaraj, K. S. Ashok and S. K. Sahoo, Vitamin B6 Cofactor Derivative: A Dual Fluorescent Turn-On Sensor to Detect Zn2+ and CN− Ions and Its Application in Live Cell Imaging, ChemistrySelect, 2017, 2, 7570.

    Article  CAS  Google Scholar 

  75. J. Y. Choi, D. Kim and J. Yoon, A highly selective “turn-on” fluorescent chemosensor based on hydroxy pyrene–hydrazone derivative for Zn2+, Dyes Pigm., 2013, 96, 176.

    Article  CAS  Google Scholar 

  76. M. Sohrabi, M. Amirnasr, S. Meghdadi, M. Lutz, M. Bikhof Torbati and H. Farrokhpour, A highly selective fluorescence turn-on chemosensor for Zn2+, and its application in live cell imaging, and as a colorimetric sensor for Co2+: experimental and TD-DFT calculations, New J. Chem., 2018, 42, 12595.

    Article  CAS  Google Scholar 

  77. J. Y. Yun, T. G. Jo, J. Han, H. J. Jang, M. H. Lim and C. Kim, A highly sensitive and selective fluorescent chemosensor for the sequential recognition of Zn2+ and S2− in living cells and aqueous media, Sens. Actuators, B, 2018, 255, 3108.

    Article  CAS  Google Scholar 

  78. P. Sutar and T. K. Maji, Coordination Polymer Gels with Modular Nanomorphologies, Tunable Emissions, and Stimuli-Responsive Behavior Based on an Amphiphilic Tripodal Gelator, Inorg. Chem., 2017, 56, 9417.

    Article  CAS  PubMed  Google Scholar 

  79. C. Gao, X. Jin, X. Yan, P. An, Y. Zhang, L. Liu, H. Tian, W. Liu, X. Yao and Y. Tang, A small molecular fluorescent sensor for highly selectivity of zinc ion, Sens. Actuators, B, 2013, 176, 775.

    Article  CAS  Google Scholar 

  80. Z.-L. Gong, B.-X. Zhao, W.-Y. Liu and H.-S. Lv, A new highly selective “turn on” fluorescent sensor for zinc ion based on a pyrazoline derivative, J. Photochem. Photobiol., A, 2011, 218, 6.

    Article  CAS  Google Scholar 

  81. B. Zhao, X.-Y. Chen, P. Cheng, D.-Z. Liao, S.-P. Yan and Z.-H. Jiang, Coordination Polymers Containing 1D Channels as Selective Luminescent Probes, J. Am. Chem. Soc., 2004, 126, 15394.

    Article  CAS  PubMed  Google Scholar 

  82. X. Zhou, J.-L. Peng, C.-Y. Wen, Z.-Y. Liu, X.-H. Wang, J.-Z. Wu and Y.-C. Ou, Tuning the structure and Zn(ii) sensing of lanthanide complexes with two phenylimidazophenanthrolines by acetonitrile hydrolysis, CrystEngComm, 2017, 19, 6533.

    Article  CAS  Google Scholar 

  83. T. Fan, T. Xia, Q. Zhang, Y. Cui, Y. Yang and G. Qian, A porous and luminescent metal-organic framework containing triazine group for sensing and imaging of Zn2+, Microporous Mesoporous Mater., 2018, 266, 1.

    Article  CAS  Google Scholar 

  84. I. M. El-Sewify, M. A. Shenashen, A. Shahat, H. Yamaguchi, M. M. Selim, M. M. H. Khalil and S. A. El-Safty, Ratiometric Fluorescent Chemosensor for Zn2+ Ions in Environmental Samples Using Supermicroporous Organic-Inorganic Structures as Potential Platforms, ChemistrySelect, 2017, 2, 11083.

    Article  CAS  Google Scholar 

  85. I. M. El-Sewify, M. A. Shenashen, A. Shahat, M. M. Selim, M. M. H. Khalil and S. A. El-Safty, Sensitive and selective fluorometric determination and monitoring of Zn2+ ions using supermicroporous Zr-MOFs chemosensors, Microchem. J., 2018, 139, 24.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudip Kumar Mondal.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c9pp00024k

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majee, P., Singha, D.K., Mondal, S.K. et al. Effect of charge transfer and structural rigidity on divergent luminescence response of a metal organic framework towards different metal ions: luminescence lifetime decay experiments and DFT calculations. Photochem Photobiol Sci 18, 1110–1121 (2019). https://doi.org/10.1039/c9pp00024k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c9pp00024k

Navigation