Skip to main content
Log in

The UVA response of enolic dibenzoylmethane: beyond the static approach

  • PAPER
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Enolic dibenzoylmethane is used in cosmetic sunscreens as a UVA filter because it strongly absorbs radiation around 340 nm. Assessing the absorption properties solely on the basis of the vertical excitation spectrum at the minimum of the potential energy surface leads to the conclusion that the nn* state is not initially photoexcited. Since this molecule exhibits large changes in structure due to nuclear thermal and quantum fluctuations, it is not sufficient to consider one molecular configuration but an ensemble of configurations. In this work, we simulate its UVA response by employing the DFT/MRCI method in conjunction with configurations sampled from density functional theory-based classical and path integral molecular dynamics as well as by computing Franck-Condon factors. Our findings indicate that thermal and nuclear quantum fluctuations symmetrically broaden the excited states' absorption within the semi-classical approximation and thus it is necessary to include vibronic effects in order to correctly reproduce the experimental spectrum. The absorption is largely dominated by the nn* state but there is a minor contribution from the nn* state, contrary to the static result. The crossing between these two states occurs during the intramolecular proton transfer. This knowledge is of importance for studying photorelaxation mechanisms of dibenzoylmethane and other ß-diketone compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. P. Pfeifer and A. Besaratinia, Photochem. Photobiol. Sci., 2012, 11, 90–97.

    Article  CAS  PubMed  Google Scholar 

  2. L. A. Baker, S. E. Greenough and V. G. Stavros, J. Phys. Chem. Lett., 2016, 7, 4655–4665.

    Article  CAS  PubMed  Google Scholar 

  3. L. A. Baker, B. Marchetti, T. N. V. Karsili, V. G. Stavros and M. N. R. Ashfold, Chem. Soc. Rev., 2017, 46, 3770–3791.

    Article  CAS  PubMed  Google Scholar 

  4. N. A. Shaath, Photochem. Photobiol. Sci., 2010, 9, 464–469.

    Article  CAS  PubMed  Google Scholar 

  5. M. Kojic, M. Petkovic and M. Etinski, Phys. Chem. Chem. Phys., 2016, 18, 22168–22178.

    Article  CAS  PubMed  Google Scholar 

  6. M. Kojic, M. Petkovic and M. Etinski, J. Serb. Chem. Soc., 2016, 81, 1393–1406.

    Article  CAS  Google Scholar 

  7. P. Gilli, V. Bertolasi, L. Pretto, V. Ferretti and G. Gilli, J. Am. Chem. Soc., 2004, 126, 3845–3855.

    Article  CAS  PubMed  Google Scholar 

  8. M. Petkovic and M. Etinski, RSC Adv., 2014, 4, 38517–38526.

    Article  CAS  Google Scholar 

  9. M. Etinski and B. Ensing, J. Phys. Chem. A, 2018, 122, 5945–5954.

    Article  CAS  PubMed  Google Scholar 

  10. P. K. Verma, A. Steinbacher, F. Koch, P. Nuernberger and T. Brixner, Phys. Chem. Chem. Phys., 2015, 17, 8459–8466.

    Article  CAS  PubMed  Google Scholar 

  11. V. Feyer, K. C. Prince, M. Coreno, S. Melandri, A. Maris, L. Evangelisti, W. Caminati, B. M. Giuliano, H. G. Kjaergaard and V. Carravetta, J. Phys. Chem. Lett., 2018, 9, 521–526.

    Article  CAS  PubMed  Google Scholar 

  12. S. Tobita, J. Ohba, K. Nakagawa and H. Shizuka, J. Photochem. Photobiol., A, 1995, 92, 61–67.

    Article  CAS  Google Scholar 

  13. P. K. Verma, F. Koch, A. Steinbacher, P. Nuernberger and T. Brixner, J. Am. Chem. Soc., 2014, 136, 14981–14989.

    Article  CAS  PubMed  Google Scholar 

  14. F. D. Sala, R. Rousseau, A. Görling and D. Marx, Phys. Rev. Lett., 2004, 92, 183401.

    Article  PubMed  CAS  Google Scholar 

  15. A. Kaczmarek, M. Shiga and D. Marx, J. Phys. Chem. A, 2009, 113, 1985–1994.

    Article  CAS  PubMed  Google Scholar 

  16. Y. K. Law and A. A. Hassanali, J. Phys. Chem. A, 2015, 119, 10816–10827.

    Article  CAS  PubMed  Google Scholar 

  17. S. Sappati, A. Hassanali, R. Gebauer and P. Ghosh, J. Chem. Phys., 2016, 145, 205102.

    Article  PubMed  CAS  Google Scholar 

  18. M. Barbatti and K. Sen, Int. J. Quantum Chem., 2016, 116, 762–771.

    Article  CAS  Google Scholar 

  19. L. Grisanti, D. Pinotsi, R. Gebauer, G. S. K. Schierle and A. A. Hassanali, Phys. Chem. Chem. Phys., 2017, 19, 4030–4040.

    Article  CAS  PubMed  Google Scholar 

  20. Y. K. Law and A. A. Hassanali, J. Chem. Phys., 2018, 148, 102331.

    Article  CAS  PubMed  Google Scholar 

  21. T. J. Zuehlsdorff, J. A. Napoli, J. M. Milanese, T. E. Markland and C. M. Isborn, J. Chem. Phys., 2018, 149, 024107.

    Article  PubMed  CAS  Google Scholar 

  22. M. Barbatti, A. J. A. Aquino and H. Lischka, Phys. Chem. Chem. Phys., 2010, 12, 4959–4967.

    Article  CAS  PubMed  Google Scholar 

  23. R. Crespo-Otero and M. Barbatti, Theor. Chem. Acc., 2012, 131, 1237.

    Article  CAS  Google Scholar 

  24. J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing and J. Hutter, Comput. Phys. Commun., 2005, 167, 103–128.

    Article  CAS  Google Scholar 

  25. A. D. Becke, Phys. Rev. A, 1988, 38, 3098–3100.

    Article  CAS  Google Scholar 

  26. C. T. Lee, W. T. Yang and R. G. Parr, Phys. Rev. B: Condens. Matter Mater. Phys., 1988, 37, 785–789.

    Article  CAS  Google Scholar 

  27. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.

    Article  CAS  PubMed  Google Scholar 

  28. G. Lippert, J. Hutter and M. Parrinello, Mol. Phys., 1997, 92, 477–487.

    Article  CAS  Google Scholar 

  29. S. Goedecker, M. Teter and J. Hutter, Phys. Rev. B: Condens. Matter Mater. Phys., 1996, 54, 1703–1710.

    Article  CAS  Google Scholar 

  30. I. Lyskov, M. Kleinschmidt and C. M. Marian, J. Chem. Phys., 2016, 144, 034104.

    Article  PubMed  CAS  Google Scholar 

  31. A. Schäfer, C. Huber and R. Ahlrichs, J. Chem. Phys., 1994, 100, 5829–5835.

    Article  Google Scholar 

  32. O. Treutler and R. Ahlrichs, J. Chem. Phys., 1995, 102, 346–354.

    Article  CAS  Google Scholar 

  33. TURBOMOLE V7.2 2017, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com.

  34. A. D. Becke, J. Chem. Phys., 1993, 98, 1372–1377.

    Article  CAS  Google Scholar 

  35. F. Weigend, M. Häser, H. Patzelt and R. Ahlrichs, Chem. Phys. Lett., 1998, 294, 143–152.

    Article  CAS  Google Scholar 

  36. S. Grimme, J. Chem. Phys., 2003, 118, 9095.

    Article  CAS  Google Scholar 

  37. O. Christiansen, H. Koch and P. Jorgensen, Chem. Phys. Lett., 1995, 243, 409–418.

    Article  CAS  Google Scholar 

  38. O. Vahtras, J. Almlöf and M. W. Feyereisen, Chem. Phys. Lett., 1993, 213, 514–518.

    Article  CAS  Google Scholar 

  39. C. Hättig and F. Weigend, J. Chem. Phys., 2000, 113, 5154.

    Article  Google Scholar 

  40. C. Hättig and A. Köhn, J. Chem. Phys., 2002, 117, 6939.

    Article  CAS  Google Scholar 

  41. A. Hellweg, S. A. Grün and C. Hättig, Phys. Chem. Chem. Phys., 2008, 10, 4119–4127.

    Article  CAS  PubMed  Google Scholar 

  42. S. Lobsiger, M. Etinski, S. Blaser, H.-M. Frey, C. Marian and S. Leutwyler, J. Chem. Phys., 2015, 143, 234301.

    Article  PubMed  CAS  Google Scholar 

  43. W. Domcke, L. Cederbaum, H. Köppel and W. von Niessen, Mol. Phys., 1977, 34, 1759–1770.

    Article  CAS  Google Scholar 

  44. M. Etinski, J. Tatchen and C. M. Marian, J. Chem. Phys., 2011, 134, 154105.

    Article  PubMed  CAS  Google Scholar 

  45. M. Etinski, J. Tatchen and C. M. Marian, Phys. Chem. Chem. Phys., 2014, 16, 4740–4751.

    Article  CAS  PubMed  Google Scholar 

  46. M. Etinski, V. Rai-Constapel and C. M. Marian, J. Chem. Phys., 2014, 140, 114104.

    Article  PubMed  CAS  Google Scholar 

  47. A. L. Sobolewski and W. Domcke, J. Phys. Chem. A, 1999, 103, 4494–4504.

    Article  CAS  Google Scholar 

  48. A. J. A. Aquino, H. Lischka and C. Hättig, J. Phys. Chem. A, 2005, 109, 3201–3208.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M. E. and B. M. acknowledge the Ministry of Education, Science, and Technological Development of the Republic of Serbia for the financial support (Contract No. 172040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihajlo Etinski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kojić, M., Lyskov, I., Milovanović, B. et al. The UVA response of enolic dibenzoylmethane: beyond the static approach. Photochem Photobiol Sci 18, 1324–1332 (2019). https://doi.org/10.1039/c9pp00005d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c9pp00005d

Navigation