Skip to main content
Log in

Early photophysical events of a ruthenium(II) molecular dyad capable of performing photochemical water oxidation and of its model compounds

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The early photophysical events occurring in the dinuclear metal complex [(ttb-terpy)(I)Ru(μ-dntpz)Ru (bpy)2]3+ (2; ttb-terpy = 4,4′,4″-tri-tert-butyl-terpy; bpy = 2,2′-bipyridine; dntpz = 2,5-di-(1,8-dinaphthyrid-2-yl)pyrazine) – a species containing the chromophoric {(bpy)2Ru(μ-dntpz)}2+ subunit and the catalytic {(I)(ttb-terpy)Ru(μ-dntpz)}+ unit, already reported to be able to perform photocatalytic water oxidation – have been studied by ultrafast pump–probe spectroscopy in acetonitrile solution. The model species [Ru(bpy)2(dntpz)]2+ (1), [(bpy)2Ru(μ-dntpz)Ru(bpy)2]4+ (3), and [(ttb-terpy)(I)Ru((μ-dntpz)Ru[(ttb-terpy)(I)]2+ (4) have also been studied. For completeness, the absorption spectra, redox behavior of 1–4 and the spectroelectrochemistry of the dinuclear species 2–4 have been investigated. The usual 3MLCT (metal-to-ligand charge transfer) decay, characterized by relatively long lifetimes on the ns timescale, takes place in 1 and 3, whose lowest-energy level involves a {(bpy)2Ru(dntpz)}2+ unit, whereas for 2 and 4, whose lowest-energy excited state involves a 3MLCT centered on the {(I)(ttb-terpy)Ru(μ-dntpz)}+ subunit, the excited-state lifetimes are on the ps timescale, possibly involving population of a low-lying 3MC (metal-centered) level. Compound 2 also exhibits a fast process, with a time constant of 170 fs, which is attributed to intercomponent energy transfer from the MLCT state centered in the {(bpy)2Ru(μ-dntpz)}2+ unit to the MLCT state involving the {(I)(ttb-terpy)Ru(μ-dntpz)}+ unit. Both the intercomponent energy transfer and the MLCT-to-MC activation process take place from non-equilibrated MLCT states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. The topic is too vaste to be exhaustively quoted. For some representative articles, see: (a) J. H. Alstrum-Acevedo, M. K. Brennaman and T. J. Meyer, Inorg. Chem., 2005, 44, 6802; (b) R. Zong and R. P. Thummel, J. Am. Chem. Soc., 2005, 127, 12802; (c) I. Romero, M. Rodriguez, C. Sens, J. Mola, M. R. Kollipara, L. Francis, E. Mas-Marza, L. Escriche and A. Llobet, Inorg. Chem., 2008, 47, 1824; (d) J. J. Concepcion, J. W. Jurss, J. L. Templeton and T. J. Meyer, J. Am. Chem. Soc., 2008, 130, 16462; (e) F. Liu, J. J. Concepcion, J. W. Jurss, T. Cardolaccia, J. L. Templeton and T. J. Meyer, Inorg. Chem., 2008, 47, 1727; (f) H. W. Tseng, R. Zong, J. T. Muckerman and R. Thummel, Inorg. Chem., 2008, 47, 11763; (g) J. J. Concepcion, J. W. Jurss, J. L. Templeton and T. J. Meyer, J. Am. Chem. Soc., 2008, 130, 16462; (h) A. Sartorel, M. Carraro, G. Scorrano, R. De Zorzi, S. Geremia, N. D. McDaniel, S. Bernhard and M. Bonchio, J. Am. Chem. Soc., 2008, 130, 5006; (i) H. Yamazaki, A. Shouji, M. Kajita and M. Yagi, Coord. Chem. Rev., 2010, 254 ,2483; (j) S. Roeser, M. Z. Ertem, C. Cady, R. Lomoth, J. Benet-Buchholz, L. Hammarstroem, B. Sarkar, W. Kaim, C. J. Cramer and A. Llobet, Inorg. Chem., 2012, 51, 320.

    Article  Google Scholar 

  2. (a) S. W. Gersten, G. J. Samuels and T. J. Meyer, J. Am. Chem. Soc., 1982, 104, 4029; (b) J. A. Gilbert, D. S. Eggleston, W. R. Murphy, D. A. Geselowitz, S. W. Gersten, D. J. Hodgson and T. J. Meyer, J. Am. Chem. Soc., 1985, 107, 3855.

    Article  Google Scholar 

  3. See, for example: (a) L. Duan, F. Bozoglian, S. Mandal, B. Stewart, T. Privalov, A. Llobet and L. Sun, Nat. Chem., 2012, 4, 418; (b) S. Maji, L. Vigara, F. Cottone, F. Bozoglian, J. Benet-Bichholz and A. Llobet, Angew. Chem., Int. Ed., 2012, 51, 5967; (c) D. Moonshiram, I. Alperovich, J. J. Concepcion, T. J. Meyer and Y. Pushkar, Proc. Natl. Acad. Sci. U. S. A., 2013, 110, 3765; (d) L. Kohler, N. Kaveevivitchai, R. Zong and R. P. Thummel, Inorg. Chem., 2014, 53, 912; (e) J. D. Blackmore, R. H. Crabtree and G. W. Brudvig, Chem. Rev., 2015, 115, 12974; (f) L. Tong and R. P. Thummel, Chem. Sci., 2016, 7, 6591; (g) Y. Tsubonouchi, S. Lin, A. R. Parent, G. W. Brudvig and K. Sakai, Chem. Commun., 2016, 52, 8018; (h) T. J. Meyer, M. W. Sheridan and B. D. Sherman, Chem. Soc. Rev., 2017, 46, 6148; (i) G. W. Brudvig and S. Campagna, Chem. Soc. Rev., 2017, 46, 6085; (j) D. W. Shaffer, Y. Xie and J. J. Concepcion, Chem. Soc. Rev., 2017, 46, 6170.

    Google Scholar 

  4. (a) J. J. Concepcion, M.-K. Tsai, J. T. Muckerman and T. J. Meyer, J. Am. Chem. Soc., 2010, 132, 1545; (b) D. E. Polyansky, J. T. Muckerman, J. Rochford, R. Zong, R. P. Thummel and E. Fujita, J. Am. Chem. Soc., 2011, 133, 14665; (c) A. Lewandowska-Andralojc, D. E. Polyansky, R. Zong, R. P. Thummel and E. Fujita, Phys. Chem. Chem. Phys., 2013, 15, 14058; (d) R. Matheu, M. Z. Ertem, J. Benet-Buchholz, E. Coronado, V. S. Batista, X. Sala and A. Llobet, J. Am. Chem. Soc., 2015, 137, 10786.

    Article  Google Scholar 

  5. (a) L. Duan, L. Wang, A. K. Inge, A. Fisher, X. Zou and L. Sun, Inorg. Chem., 2013, 52, 7844; (b) D. W. Shaffer, Y. Xie, D. J. Szalda and J. J. Concepcion, Inorg. Chem., 2016, 55, 12024; (c) T. Fan, L. Duan, P. Huang, H. Chen, Q. Daniel, M. S. G. Ahlqyuist and L. Sun, ACS Catal., 2017, 7, 2956; (d) Y. Xie, D. W. Shaffer and J. J. Concepcion, Inorg. Chem., 2018, 57, 10533, and refs. therein.

  6. (a) C. J. Richmond, R. Matheu, A. Poater, L. Falivene, J. Benet-Buchholz, X. Sala, L. Caballo and A. Llobet, Chem. – Eur. J., 2014, 20, 17282; (b) D. L. Ashford, M. K. Gish, A. K. Vannucci, M. K. Brennaman, J. L. Templeton, J. M. Papanikolas and T. J. Meyer, Chem. Rev., 2015, 115, 13006, and refs. therein.

  7. N. Kaveevivitchai, R. Chitta, R. Zong, M. El Ojaimi and R. P. Thummel, J. Am. Chem. Soc., 2012, 134, 10721.

    Article  CAS  Google Scholar 

  8. (a) M. K. Brennaman, R. J. Dillon, L. Alibabaei, M. K. Gish, C. J. Dares, D. L. Ashford, R. L. House, G. J. Meyer, J. M. Papanikolas and T. J. Meyer, J. Am. Chem. Soc., 2016, 138, 13085; (b) B. D. Sherman, Y. Xie, M. V. Sheridan, D. Wang, D. W. Shaffer, T. J. Meyer and J. J. Concepcion, ACS Energy Lett., 2017, 2, 124; (c) B. Shan, B. D. Sherman, C. M. Klug, A. Nayak, S. L. Marquard, Q. Liu, R. M. Bullock and T. J. Meyer, J. Phys. Chem. Lett., 2017, 8, 4374; (d) B. Shan, A. Nayak, M. K. Brennaman, M. Liu, S. L. Marquard, M. S. Eberhart and T. J. Meyer, J. Am. Chem. Soc., 2018, 140, 6493; (e) L. Wu, M. Eberhart, A. Nayak, M. K. Brennaman, B. Shan and T. J. Meyer, J. Am. Chem. Soc., 2018, 140, 15062.

    Article  Google Scholar 

  9. J. T. Hewitt, J. J. Concepcion and N. H. Damrauer, J. Am. Chem. Soc., 2013, 135, 12500.

    Article  CAS  Google Scholar 

  10. M. Chrzanowska, A. Katafias, O. Impert, A. Kozakiewicz, A. Surdykowski, P. Brzozowska, A. Zachl, R. Puchta and R. van Eldik, Dalton Trans., 2017, 46, 10264, and refs therein.

  11. D. Brown, S. Muranjan and R. P. Thummel, Eur. J. Inorg. Chem., 2003, 3547.

  12. (a) J. M. McCusker, Acc. Chem. Res., 2003, 36, 876; (b) M. Chergui, Acc. Chem. Res., 2015, 49, 801 and refs. therein.

  13. (a) S. Campagna, F. Puntoriero, F. Nastasi, G. Bergamini and V. Balzani, Top. Curr. Chem., 2007, 280, 117, and refs. therein.

  14. Vibrational cooling in the same time range have been reported for several transition metal polypyridine complexes, see for example: (a) A. El Nahhas, C. Consanti, A. M. Blanco-Rodriguez, K. M. Lancaster, O. Braem, A. Cannizzo, M. Towrie, I. Clarck, S. Zalis, M. Chergui and A. Vlcek, Inorg. Chem., 2011, 50, 2932; (b) F. Nastasi, F. Puntoriero, M. Natali, M. Mba, M. Maggini, P. Mussini, M. Panigati and S. Campagna, Photochem. Photobiol. Sci., 2015, 14, 909.

    Google Scholar 

  15. F. Puntoriero, F. Nastasi, M. Galletta and S. Campagna, in Comprehensive Inorganic Chemistry II, ed. J. Reedijk and K. Poeppelmeier, Elsevier, Oxford, 2013, vol. 8, pp. 255–337.

    CAS  Google Scholar 

  16. (a) T. J. Meyer, Pure Appl. Chem., 1986, 58, 1193, and refs. therein. (b) A. Juris, V. Balzani, F. Barigelletti, S. Campagna, P. Belser and A. von Zelewsky, Coord. Chem. Rev., 1988, 84, 85.

    Google Scholar 

  17. (a) H. Berglund Baudin, J. Davidsson, S. Serroni, A. Juris, V. Balzani, S. Campagna and L. Hammarström, J. Phys. Chem. A, 2002, 106, 4312; (b) J. Andersson, F. Puntoriero, S. Serroni, A. Yartsev, T. Pascher, T. Polivka, S. Campagna and V. Sundström, Chem. Phys. Lett., 2004, 386, 336; (c) J. Andersson, F. Puntoriero, S. Serroni, A. Yartsev, T. Pascher, T. Polivka, S. Campagna and V. Sundström, Faraday Discuss., 2004, 127 ,295; (d) J. Larsen, F. Puntoriero, T. Pascher, N. McClenaghan, S. Campagna, E. Åkesson and V. Sundström, ChemPhysChem, 2007, 8, 2643.

    Google Scholar 

  18. (a) G. Denti, S. Campagna, L. Sabatino, S. Serroni, M. Ciano and V. Balzani, Inorg. Chem., 1990, 29, 4750; (b) A. Arrigo, G. La Ganga, F. Nastasi, S. Serroni, A. Santoro, M.-P. Santoni, M. Galletta, S. Campagna and F. Puntoriero, C. R. Chim., 2017, 20, 209.

    Google Scholar 

  19. (a) G. Giuffrida and S. Campagna, Coord. Chem. Rev., 1994, 135–136, 517; (b) M. D. Ward, Chem. Soc. Rev., 1995, 24, 121 and refs. therein.

  20. M. Natali, S. Campagna and F. Scandola, Chem. Soc. Rev., 2014, 43, 4005.

    Article  CAS  Google Scholar 

  21. T. Koopmans, Physica, 1934, 1, 104.

    Article  Google Scholar 

  22. E. Jakubikova, W. Chen, D. N. Dattelbaum, F. N. Rein, R. C. Rocha, R. L. Martin and E. R. Batista, Inorg. Chem., 2009, 48, 10720.

    Article  CAS  Google Scholar 

  23. B. S. Brunschwig, C. Creutz and N. Sutin, Chem. Soc. Rev., 2002, 31, 168 and refs. therein.

  24. D. M. D’Alessandro and F. R. Keane, Chem. Soc. Rev., 2006, 35i, 424.

  25. (a) M. Burian, Z. Syrgiannis, G. La Ganga, F. Puntoriero, M. Natali, F. Scandola, S. Campagna, M. Prato, M. Bonchio, H. Amenitsch and A. Sartorel, Inorg. Chim. Acta, 2017, 454, 171; (b) A. Arrigo, F. Puntoriero, G. La Ganga, S. Campagna, M. Burian, S. Bernstorff and H. Amenitsch, Chem, 2017, 3, 494.

    Google Scholar 

  26. (a) J. E. Moser and M. Graetzel, Chem. Phys., 1993, 176, 493; (b) Y. Tachibana, J. E. Moser, M. Grätzel, D. R. Klug and J. R. Durrant, Chem. Phys. Lett., 1997, 272, 489; (c) N. S. McCool, J. R. Swierk, C. T. Nemes, C. A. Schmuttenmaer and T. E. Mallouk, J. Phys. Chem. Lett., 2016, 7, 2930; (d) J. R. Swierk, N. S. McCool, C. T. Nemes, T. E. Mallouk and C. A. Schmuttenmaer, J. Phys. Chem. C, 2016, 120, 5940; (e) C. S. Ponseca, P. Chabera, J. Uhlig, P. Persson and V. Sundstroem, Chem. Rev., 2017, 117, 10940.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Electronic supplementary information (ESI) available: General procedures, equipments and methods, synthesis and characterization details. See DOI: 10.1039/c8pp00530c

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nastasi, F., Santoro, A., Serroni, S. et al. Early photophysical events of a ruthenium(II) molecular dyad capable of performing photochemical water oxidation and of its model compounds. Photochem Photobiol Sci 18, 2164–2173 (2019). https://doi.org/10.1039/c8pp00530c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00530c

Navigation