Skip to main content
Log in

1,10-Phenanthroline-dithiine iridium and ruthenium complexes: synthesis, characterization and photocatalytic dihydrogen evolution

  • PAPER
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

We report the synthesis and the spectroscopic and electrochemical properties of six mononuclear iridium(III) and ruthenium(II) complexes bearing S,S'-extended phenanthroline ligands. Starting from 5,6-dibromide-1,10-phenanthroline, the dithiine derivatives N,N'-1,10-phenanthrolinedithiino[2,3-b]quinoxa-line and N,N'-1,10-phenanthrolinedithiino[2,3-b]benzene were prepared by primary N,N'-complexation of the dibromo derivative and subsequent nucleophilic substitution at the complex. The photoluminescence of the phenanthroline-dithiine containing complexes shows distinctively increased lifetimes for all Ir(III) and Ru(II) complexes. The activity of the series of Ir(III) and Ru(II) complexes as photosensitizers in visible-light photocatalytic water reduction is demonstrated by dihydrogen evolution with a [Fe3(CO)12] catalyst and triethylamine as a sacrificial donor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. O’Regan and M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 1991, 353, 737–740.

    Google Scholar 

  2. M. Grätzel, Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells, Inorg. Chem., 2005, 44(20), 6841–6851.

    Article  PubMed  CAS  Google Scholar 

  3. P. G. Bomben, K. C. D. Robson, B. D. Koivisto and C. P. Berlinguette, Cyclometalated ruthenium chromo-phores for the dye-sensitized solar cell, Coord. Chem. Rev., 2012, 256(15-16), 1438–1450.

    Article  CAS  Google Scholar 

  4. S. T. Parker, J. D. Slinker, M. S. Lowry, M. P. Cox, S. Bernhard and G. G. Malliaras, Improved Turn-on Times of Iridium Electroluminescent Devices by Use of Ionic Liquids, Chem. Mater., 2005, 17(12), 3187–3190.

    Article  CAS  Google Scholar 

  5. A. Tsuboyama, H. Iwawaki, M. Furugori, T. Mukaide, J. Kamatani, S. Igawa, T. Moriyama, S. Miura, T. Takiguchi, S. Okada, M. Hoshino and K. Ueno, Homoleptic Cyclometalated Iridium Complexes with Highly Efficient Red Phosphorescence and Application to Organic Light-Emitting Diode, J. Am. Chem. Soc., 2003, 125(42), 12971–12979.

    Article  CAS  PubMed  Google Scholar 

  6. B.-S. Du, C.-H. Lin, Y. Chi, J.-Y. Hung, M.-W. Chung, T.-Y. Lin, G.-H. Lee, K.-T. Wong, P.-T. Chou, W.-Y. Hung and H.-C. Chiu, Diphenyl(1-naphthyl)phosphine Ancillary for Assembling of Red and Orange-Emitting Ir(III) Based Phosphors; Strategic Synthesis, Photophysics, and Organic Light-Emitting Diode Fabrication, Inorg. Chem., 2010, 49(19), 8713–8723.

    Article  CAS  PubMed  Google Scholar 

  7. L. Sun, A. Galan, S. Ladouceur, J. D. Slinker and E. Zysman-Colman, High stability light-emitting electro-chemical cells from cationic iridium complexes with bulky 5,5' substituents, J. Mater. Chem., 2011, 21(44), 18083–18088.

    Article  CAS  Google Scholar 

  8. E. Zysman-Colman, J. D. Slinker, J. B. Parker, G. G. Malliaras and S. Bernhard, Improved Turn-On Times of Light-Emitting Electrochemical Cells, Chem. Mater., 2008, 20(2), 388–396.

    Article  CAS  Google Scholar 

  9. H. J. Bolink, L. Cappelli, E. Coronado, M. Grätzel, E. Orti, R. D. Costa, P. M. Viruela and M. K. Nazeeruddin, Stable Single-Layer Light-Emitting Electrochemical Cell Using 4,7-Diphenyl-1,10-phenanthroline-bis(2-phenylpyridine) iridium(III) Hexafluorophosphate, J. Am. Chem. Soc., 2006, 128(46), 14786–14787.

    Article  CAS  PubMed  Google Scholar 

  10. Q. Zhao, M. Yu, L. Shi, S. Liu, C. Li, M. Shi, Z. Zhou, C. Huang and F. Li, Cationic Iridium(III) Complexes with Tunable Emission Color as Phosphorescent Dyes for Live Cell Imaging, Organometallics, 2010, 29(5), 1085–1091.

    Article  CAS  Google Scholar 

  11. C. Li, M. Yu, Y. Sun, Y. Wu, C. Huang and F. Li, A Nonemissive Iridium(III) Complex That Specifically Lights-Up the Nuclei of Living Cells, J. Am. Chem. Soc., 2011, 133(29), 11231–11239.

    Article  CAS  PubMed  Google Scholar 

  12. Q. Zhao, T. Cao, F. Li, X. Li, H. Jing, T. Yi and C. Huang, A Highly Selective and Multisignaling Optical-Electrochemical Sensor for Hg2+ Based on a Phosphorescent Iridium(III) Complex, Organometallics, 2007, 26(8), 2077–2081.

    Article  CAS  Google Scholar 

  13. Q. Zhao, S. Liu, M. Shi, F. Li, H. Jing, T. Yi and C. Huang, Tuning Photophysical and Electrochemical Properties of Cationic Iridium(III) Complex Salts with Imidazolyl Substituents by Proton and Anions, Organometallics, 2007, 26(24), 5922–5930.

    Article  CAS  Google Scholar 

  14. N. Zhao, Y.-H. Wu, H.-M. Wen, X. Zhang and Z.-N. Chen, Conversion from ILCT to LLCT/MLCT Excited State by Heavy Metal Ion Binding in Iridium(III) Complexes with Functionalized 2,2'-Bipyridyl Ligands, Organometallics, 2009, 28(19), 5603–5611.

    Article  CAS  Google Scholar 

  15. J. Sun, W. Wu, H. Guo and J. Zhao, Visible-Light Harvesting with Cyclometalated Iridium(III) Complexes Having Long-Lived 3IL Excited States and Their Application in Triplet-Triplet-Annihilation Based Upconversion, Eur. J. Inorg. Chem., 2011, 2011(21), 3165–3173.

    Article  CAS  Google Scholar 

  16. J. Barber and P. D. Tran, From natural to artificial photo-synthesis, J. R. Soc., Interface, 2013, 10(81), 1–16.

    Article  CAS  Google Scholar 

  17. P. D. Frischmann, K. Mahata and F. Würthner, Powering the future of molecular artificial photosynthesis with light-harvesting metallosupramolecular dye assemblies, Chem. Soc. Rev., 2013, 42(4), 1847–1870.

    Article  CAS  PubMed  Google Scholar 

  18. S. Lin, M. A. Ischay, C. G. Fry and T. P. Yoon, Radical Cation Diels-Alder Cycloadditions by Visible Light Photocatalysis, J. Am. Chem. Soc., 2011, 133(48), 19350–19353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. F. Teply, Photoredox catalysis by [Ru(bpy)3]2+ to trigger transformations of organic molecules. Organic synthesis using visible-light photocatalysis and its 20th century roots, Collect. Czech. Chem. Commun., 2011, 76(7), 859–917.

    Article  CAS  Google Scholar 

  20. C. K. Prier, D. A. Rankic and D. W. C. MacMillan, Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis, Chem. Rev., 2013, 113(7), 5322–5363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. S. Tschierlei, A. Neubauer, N. Rockstroh, M. Karnahl, P. Schwarzbach, H. Junge, M. Beller and S. Lochbrunner, Ultrafast excited state dynamics of iridium(iii) complexes and their changes upon immobilisation onto titanium dioxide layers, Phys. Chem. Chem. Phys., 2016, 18(16), 10682–10687.

    Article  CAS  PubMed  Google Scholar 

  22. F. O. Garces, K. A. King and R. J. Watts, Synthesis, Structure, Electrochemistry, and Photophysics of Methyl-Substituted Phenylpyridine Ortho-Metalated Iridium(III) Complexes, Inorg. Chem., 1988, (27), 3464–3471.

    Google Scholar 

  23. H. Yersin, A. F. Rausch, R. Czerwieniec, T. Hofbeck and T. Fischer, The triplet state of organo-transition metal com-pounds. Triplet harvesting and singlet harvesting for efficient OLEDs, Coord. Chem. Rev., 2011, 255(21-22), 2622–2652.

    Article  CAS  Google Scholar 

  24. L. Flamigni, A. Barbieri, C. Sabatini, B. Ventura and F. Barigelletti, Photochemistry and Photophysics of Coordination Compounds: Iridium, Top. Curr. Chem., 2007, 281, 143–203.

    Article  CAS  Google Scholar 

  25. F. Gärtner, S. Denurra, S. Losse, A. Neubauer, A. Boddien, A. Gopinathan, A. Spannenberg, H. Junge, S. Lochbrunner, M. Blug, S. Hoch, J. Busse, S. Gladiali and M. Beller, Synthesis and Characterization of New Iridium Photosensitizers for Catalytic Hydrogen Generation from Water, Chem. - Eur.J., 2012, 18, 3220–3225.

    Article  PubMed  CAS  Google Scholar 

  26. A. F. Henwood and E. Zysman-Colman, Lessons learned in tuning the optoelectronic properties of phosphorescent iridium(iii) complexes, Chem. Commun., 2017, 53(5), 807–826.

    Article  CAS  Google Scholar 

  27. A. K. Pal, D. B. Cordes, K. Pringouri, M. U. Anwar, A. M. Z. Slawin, J. M. Rawson and E. Zysman-Colman, Synthesis and characterization of green-to-yellow emissive Ir(III) complexes of pyridylbenzothiadiazine ligand, J. Coord. Chem., 2016, 69(11-13), 1924–1937.

    Article  CAS  Google Scholar 

  28. M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson and S. R. Forrest, Very high-efficiency green organic light-emitting devices based on electrophosphorescence, Appl. Phys. Lett., 1999, 75(1), 4–6.

    Article  CAS  Google Scholar 

  29. M. Vijayakumar and M. S. Gopinathan, Spin-orbit coupling constants of transition metal atoms and ions in density functional theory, J. Mol. Struct.: THEOCHEM, 1996, 361(1-3), 15–19.

    Article  CAS  Google Scholar 

  30. A. B. Tamayo, B. D. Alleyne, P. I. Djurovich, S. Lamansky, I. Tsyba, N. N. Ho, R. Bau and M. E. Thompson, Synthesis and Characterization of Facial and Meridional Tris-Cyclometalated Iridium(III) Complexes, J. Am. Chem. Soc., 2003, 125(24), 7377–7387.

    Article  CAS  PubMed  Google Scholar 

  31. T. Hofbeck and H. Yersin, The Triplet State offac-Ir(ppy)3, Inorg. Chem., 2010, 49(20), 9290–9299.

    Article  CAS  PubMed  Google Scholar 

  32. J. H. Alstrum-Acevedo, M. K. Brennaman and T. J. Meyer, Chemical Approaches to Artificial Photosynthesis. 2, Inorg. Chem., 2005, 44(20), 6802–6827.

    Article  CAS  PubMed  Google Scholar 

  33. G. Li, K. Hu, K. C. D. Robson, S. I. Gorelsky, G. J. Meyer, C. P. Berlinguette and M. Shatruk, Tris-Heteroleptic Ruthenium-Dipyrrinate Chromophores in a Dye-Sensitized Solar Cell, Chem. - Eur. J., 2015, 21(5), 2173–2181.

    Article  CAS  PubMed  Google Scholar 

  34. Y. Liu, R. Hammitt, D. A. Lutterman, L. E. Joyce, R. P. Thummel and C. Turro, Ru(II) Complexes of New Tridentate Ligands: Unexpected High Yield of Sensitized 1O2, Inorg. Chem., 2009, 48(1), 375–385.

    Article  CAS  PubMed  Google Scholar 

  35. A. Juris, V. Balzani, F. Barigelletti, S. Campagna, P. Belser and A. von Zelewsky, Ru(II) Polypyridine Complexes: Photophysics, Photochemistry, Electrochemistry and Chemiluminescence, Coord. Chem. Rev., 1988, 84, 85–277.

    Article  CAS  Google Scholar 

  36. T. J. Meyer, Photochemistry of metal coordination com-plexes: metal to ligand charge transfer excited states, Pure Appl. Chem., 1986, 58(9), 1193–1206.

    Article  CAS  Google Scholar 

  37. D. W. Thompson, A. Ito and T. J. Meyer, [Ru(bpy)3]2+* and other remarkable metal-to-ligand charge transfer (MLCT) excited states, Pure Appl. Chem., 2013, 85(7), 1257–1305.

    Article  CAS  Google Scholar 

  38. H. J. Bolink, L. Cappelli, E. Coronado, M. Grätzel, E. Orti, R. D. Costa, P. M. Viruela and M. K. Nazeeruddin, Stable Single-Layer Light-Emitting Electrochemical Cell Using 4,7-Diphenyl-1,10-phenanthroline-bis(2-phenylpyridine) iridium(III) Hexafluorophosphate, J. Am. Chem. Soc., 2006, 128(46), 14786–14787.

    Article  CAS  PubMed  Google Scholar 

  39. J. W. Tucker and C. R. J. Stephenson, Shining Light on Photoredox Catalysis: Theory and Synthetic Applications, J. Org. Chem., 2012, 77(4), 1617–1622.

    Article  CAS  Google Scholar 

  40. T. R. Blum, Z. D. Miller, D. M. Bates, I. A. Gunzei and T. P. Yoon, Enantioselective photochemistry trough Lewis acid-catalyzed triplet energy transfer, Science, 2017, 354(6318), 1391–1395.

    Article  CAS  Google Scholar 

  41. J. C. Tellis, C. B. Kelly, D. N. Primer, M. Jouffroy, N. R. Patel and G. A. Molander, Single-Electron Transmetalation via Photoredox/Nickel Dual Catalysis: Unlocking a New Paradigm for sp3-sp2 Cross-Coupling, Acc. Chem. Res., 2016, 49(7), 1429–1439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. F. Gärtner, A. Boddien, E. Barsch, K. Fumino, S. Losse, H. Junge, D. Hollmann, A. Brückner, R. Ludwig and M. Beller, Photocatalytic hydrogen generation from water with iron carbonyl phosphine complexes. Improved water reduction catalysts and mechanistic insights, Chem. - Eur. J., 2011, 17(23), 6425–6436.

    Article  PubMed  CAS  Google Scholar 

  43. J. I. Goldsmith, W. R. Hudson, M. S. Lowry, T. H. Anderson and S. Bernhard, Discovery and High-Throughput Screening of Heteroleptic Iridium Complexes for Photoinduced Hydrogen Production, J. Am. Chem. Soc., 2005, 127(20), 7502–7510.

    Article  CAS  PubMed  Google Scholar 

  44. M. Klahn and T. Beweries, Organometallic water splitting-from coordination chemistry to catalysis, Rev. Inorg. Chem., 2014, 34(3), 177–198.

    Article  CAS  Google Scholar 

  45. J. Beck, J. Weber, A. B. Mukhopadhyay and M. Dolg, Bent and planar molecules in polymorphs of the tricyclic carbon sulfide C6S8, New J. Chem., 2005, 29(3), 465–473.

    Article  CAS  Google Scholar 

  46. E. Amouyal, A. Homsi, J.-C. Chambron and J.-P. Sauvage, Synthesis and Study of a Mixed-ligand Ruthenium(II) Complex in Its Ground and Excited States: Bis(2,2'-bipyri-dine)(dipyrido[3,2-a:2',3'-c]phenazine-N4N5)ruthenium(n), J. Chem. Soc., Dalton Trans., 1990, 1841–1845.

    Google Scholar 

  47. J. E. Jones, R. L. Jenkins, R. S. Hicks, A. J. Hallett and S. J. A. Pope, Water-soluble, luminescent iridium(III)-ytter-bium(m) complexes using dipyrido[3,2-a:2',3'-c]phenazine derivatives as bridging units, Dalton Trans., 2012, 41(34), 10372–10381.

    Article  CAS  PubMed  Google Scholar 

  48. A. W. McKinley, P. Lincoln and E. M. Tuite, Environmental effects on the photophysics of transition metal complexes with dipyrido[2,3-a:3',2'-c]phenazine (dppz) and related ligands, Coord. Chem. Rev., 2011, 255(21-22), 2676–2692.

    Article  CAS  Google Scholar 

  49. M. G. Pfeffer, T. Kowacs, M. Wächtler, J. Guthmuller, B. Dietzek, J. G. Vos and S. Rau, Optimization of Hydrogen-Evolving Photochemical Molecular Devices, Angew. Chem., Int. Ed., 2015, 54(22), 6627–6631.

    Article  CAS  Google Scholar 

  50. L. Hu, J. Qin, N. Zhou, Y.-F. Meng, Y. Xu, J.-L. Zuo and X.-Z. You, Synthesis, characterization, and optical properties of new metal complexes with the multi-sulfur 1,2-dithiolene ligand, Dyes Pigm., 2012, 92(3), 1223–1230.

    Article  CAS  Google Scholar 

  51. K. Nakamaru, Synthesis, Luminescence Quantum Yields, and Lifetime of Trischelated Ruthenium(II) Mixed-ligand Complexes Including 3,3'-Dimethyl-2,2'-bipyridyl, Bull. Chem. Soc. Jpn., 1982, 55, 2697–2705.

    Article  CAS  Google Scholar 

  52. J. V. Morris, M. A. Mahaney and J. R. Huber, Fluorescence Quantum Yield Determinations. 9,10-Diphenylanthracene as a Reference Standard in Different Solvents, J. Phys. Chem., 1976, 80(9), 969–974.

    Article  CAS  Google Scholar 

  53. R. E. Gerber, C. Hasbun, L. G. Dubenko, M. F. King and D. E. Bierer, ß-Mercaptopropionitrile (2-Cyanoethanethiol), Org. Synth., 2000, 77(10), 186–190.

    CAS  Google Scholar 

  54. B. P. Sullivan, D. J. Salmon and T. J. Meyer, Mixed Phosphine 2,2'-Bipyridine Complexes of Ruthenium, Inorg. Chem., 1978, 17(12), 3334–3341.

    Article  CAS  Google Scholar 

  55. S. Sprouse, K. A. King, P. J. Spellane and R. J. Watts, Photophysical Effects of Metal-Carbon o Bonds in Ortho-Metalated Complexes of Ir(III) and Rh(III), J. Am. Chem. Soc., 1984, 106, 6647–6653.

    Article  CAS  Google Scholar 

  56. L. K. Keniley, L. Ray, K. Kovnir, L. A. Dellinger, J. M. Hoyt and M. Shatruk, TTF-Annulated Phenanthroline and Unexpected Oxidative Cleavage of the C=C Bond in Its Ruthenium(II) Complex, Inorg. Chem., 2010, 49(4), 1307–1309.

    Article  CAS  PubMed  Google Scholar 

  57. K. R. Schwartz, R. Chitta, J. N. Bohnsack, D. J. Ceckanowicz, P. Miró, C. J. Cramer and K. R. Mann, Effect of Axially Projected Oligothiophene Pendants and Nitro-Functionalized Diimine Ligands on the Lowest Excited State in Cationic Ir(m) bis-Cyclometalates, Inorg. Chem., 2012, 51(9), 5082–5094.

    Article  CAS  PubMed  Google Scholar 

  58. J. Nafe, S. Herbert, F. Auras, K. Karaghiosoff, T. Bein and P. Knochel, Functionalization of Quinoxalines by Using TMP Bases: Preparation of Tetracyclic Heterocycles with High Photoluminescene Quantum Yields, Chem. - Eur. J., 2015, 21(3), 1102–1107.

    Article  CAS  PubMed  Google Scholar 

  59. R. Podsiadly and J. Sokolowska, Synthesis of novel oxidiz-able polymerization sensitizers based on the dithiino-quinoxaline skeleton, Dyes Pigm., 2012, 92(3), 1300–1307.

    Article  CAS  Google Scholar 

  60. T. Hajra, J. K. Bera and V. Chandrasekhar, Multimetallic compounds containing cyclometalated Ir(III) units: Synthesis, structure, electrochemistry and photophysical properties, Inorg. Chim. Acta, 2011, 372(1), 53–61.

    Article  CAS  Google Scholar 

  61. S. Ladouceur, D. Fortin and E. Zysman-Colman, Role of Substitution on the Photophysical Properties of 5,5'-Diaryl-2,2'-bipyridine (bpy*) in [Ir(ppy)2(bpy*)]PF6 Complexes: A Combined Experimental and Theoretical Study, Inorg. Chem., 2010, 49(12), 5625–5641.

    Article  CAS  PubMed  Google Scholar 

  62. D. Schallenberg, A. Neubauer, E. Erdmann, M. Tänzler, A. Villinger, S. Lochbrunner and W. W. Seidel, Dinuclear Ru/Ni, Ir/Ni, and Ir/Pt Complexes with Bridging Phenanthroline-5,6-dithiolate: Synthesis, Structure, and Electrochemical and Photophysical behavior, Inorg. Chem., 2014, 53(17), 8859–8873.

    Article  CAS  PubMed  Google Scholar 

  63. C. Chiorboli, C. A. Bignozzi, F. Scandola, E. Ishow, A. Gourdon and J.-P. Launay, Photophysics of Dinuclear Ru(II) and Os(II) Complexes Based on the Tetrapyrido[3,2-a:2′,3′-c:3″,2″-h:2′″-3″′-j]phenazine (tpphz) Bridging Ligand, Inorg. Chem., 1999, 38(10), 2402–2410.

    Article  CAS  Google Scholar 

  64. D. A. McGovern, A. Selmi, J. E. O'Brien, J. M. Kelly and C. Long, Reduction of dipyrido-[3,2-a:2',3'-c]-phenazine (dppz) by photolysis in ethanol solution, Chem. Commun., 2005, (11), 1402–1404.

    Google Scholar 

  65. S. Ladouceur and E. Zysman-Colman, A Comprehensive Survey of Cationic Iridium(III) Complexes Bearing Nontraditional Ligand Chelation Motifs, Eur. J. Inorg. Chem., 2013, 2013(17), 2985–3007.

    Article  CAS  Google Scholar 

  66. L. K. Keniley, N. Dupont, L. Ray, J. Ding, K. Kovnir, J. M. Hoyt, A. Hauser and M. Shatruk, Complexes with Redox-Active Ligands: Synthesis, Structure, and Electrochemical and Photophysical Behavior of the Ru(II) complex with TTF-Annulated Phenanthroline, Inorg. Chem., 2013, 52(14), 8040–8052.

    Article  CAS  PubMed  Google Scholar 

  67. K. K.-W. Lo, C.-K. Chung and N. Zhu, Nucleic Acid Intercalators and Avidin Probes Derived from Luminescent Cyclometalated Iridium(III)-Dipyridoquinoxaline and-Dipyridophenazine Complexes, Chem. - Eur. J., 2006, 12, 1500–1512.

    Article  CAS  PubMed  Google Scholar 

  68. K. Laba, P. Data, P. Zassowski, P. Pander, M. Lapkowski, K. Pluta and A. P. Monkman, Diquinoline Derivatives as Materials for Potential Optoelectronic Applications, J. Phys. Chem. C, 2015, 119(23), 13129–13137.

    Article  CAS  Google Scholar 

  69. K. Sakai, Y. Kizaki, T. Tsubomura and K. Matsumoto, Homogeneous catalyses of mixed-valent octanuclear plati-num complexes in photochemical hydrogen production from water, J. Mol. Catal., 1993, 79(1-3), 141–152.

    Article  CAS  Google Scholar 

  70. S. Hansen, M. Klahn, T. Beweries and U. Rosenthal, An Intermolecular Heterobimetallic system for Photocatalytic Water Reduction, ChemSusChem, 2012, 5(4), 656–660.

    Article  CAS  PubMed  Google Scholar 

  71. P. Lei, M. Hedlund, R. Lomoth, H. Rensmo, O. Johansson and L. Hammarström, The Role of Colloid Formation in the Photoinduced H2 Production with a RuII-PdI1 Supramolecular Complex: A Study by GC, XPS, and TEM, J. Am. Chem. Soc., 2008, 130(1), 26–27.

    Article  CAS  PubMed  Google Scholar 

  72. S. Rau, B. Schäfer, D. Gleich, E. Anders, M. Rudolph, M. Friedrich, H. Görls, W. Henry and J. G. Vos, A Supramolecular Photocatalyst for the Production of Hydrogen and the Selective Hydrogenation of Tolane, Angew. Chem., Int. Ed., 2006, 45(37), 6215–6218.

    Article  CAS  Google Scholar 

  73. V. Artero, M. Chavarot-Kerlidou and M. Fontecave, Splitting Water with Cobalt, Angew. Chem., Int. Ed., 2011, 50(32), 7238–7266.

    Article  CAS  Google Scholar 

  74. J. L. Dempsey, B. S. Brunschwig, J. R. Winkler and H. B. Gray, Hydrogen Evolution Catalyzed by Cobaloximes, Acc. Chem. Res., 2009, 42(12), 1995–2004.

    Article  CAS  PubMed  Google Scholar 

  75. P. Du and R. Eisenberg, Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: Recent progress and future challenges, Energy Environ. Sci., 2012, 5(3), 6012–6021.

    Article  CAS  Google Scholar 

  76. W. T. Eckenhoff and R. Eisenberg, Molecular systems for light driven hydrogen production, Dalton Trans., 2012, 41(42), 13004–13021.

    Article  CAS  PubMed  Google Scholar 

  77. Z. Han, W. R. McNamara, M.-S. Eum, P. L. Holland and R. Eisenberg, A Nickel Thiolate Catalyst for the Long-Lived Photocatalytic Production of Hydrogen in a Noble-Metal-Free System, Angew. Chem., Int. Ed., 2012, 51(7), 1667–1670.

    Article  CAS  Google Scholar 

  78. F. Gärtner, B. Sundararaju, A.-E. Surkus, A. Boddien, B. Loges, H. Junge, P. H. Dixneuf and M. Beller, Light-Driven Hydrogen Generation: Efficient Iron-Based Water Reduction Catalysts, Angew. Chem., Int. Ed., 2009, 48(52), 9962–9965.

    Article  CAS  Google Scholar 

  79. E. Mejia, S.-P. Luo, M. Karnahl, A. Friedrich, S. Tschierlei, A.-E. Surkus, H. Junge, S. Gladiali, S. Lochbrunner and M. Beller, A Noble-Metal-Free System for Photocatalytic Hydrogen Production from Water, Chem. - Eur. J., 2013, 19(47), 15972–15978.

    Article  CAS  PubMed  Google Scholar 

  80. N.-Y. Chen, L.-M. Xia, A. J. J. Lennox, Y.-Y. Sun, H. Chen, H.-M. Jin, H. Junge, Q.-A. Wu, J.-H. Jia, M. Beller and S.-P. Luo, Structure-Activated Copper Photosensitisers for Photocatalytic Water Reduction, Chem. - Eur. J., 2017, 23(15), 3631–3636.

    Article  CAS  PubMed  Google Scholar 

  81. M. Heberle, S. Tschierlei, N. Rockstroh, M. Ringenberg, W. Frey, H. Junge, M. Beller, S. Lochbrunner and M. Karnahl, Heteroleptic Copper Photosensitizers: Why an Extended n-System Does Not Automatically Lead to Enhanced Hydrogen Production, Chem. - Eur. J., 2017, 23(2), 312–319.

    Article  CAS  PubMed  Google Scholar 

  82. S.-P. Luo, E. Mejia, A. Friedrich, A. Pazidis, H. Junge, A.-E. Surkus, R. Jackstell, S. Denurra, S. Gladiali, S. Lochbrunner and M. Beller, Photocatalytic Water Reduction with Copper-Based Photosensitizers: A Noble-Metal-Free System, Angew. Chem., Int. Ed., 2013, 52(1), 419–423.

    Article  CAS  Google Scholar 

  83. L. L. Tinker, N. D. McDaniel, P. N. Curtin, C. K. Smith, M. J. Ireland and S. Bernhard, Visible Light Induced Catalytic Water Reduction without an Electron Relay, Chem. - Eur. J., 2007, 13(31), 8726–8732.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

EE thanks the Landesgraduiertenförderung Mecklenburg-Vorpommern and the German Science Foundation (DFG) (GRK 1626, Chemical Photocatalysis) for the graduate scholarships. We thank Marco Tänzler for providing us the suitable crystals of 2-PF6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. W. Seidel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erdmann, E., Villinger, A., König, B. et al. 1,10-Phenanthroline-dithiine iridium and ruthenium complexes: synthesis, characterization and photocatalytic dihydrogen evolution. Photochem Photobiol Sci 17, 1056–1067 (2018). https://doi.org/10.1039/c8pp00068a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00068a

Navigation