Skip to main content
Log in

Aggregation induced emission of diketopyrrolopyrrole (DPP) derivatives for highly fluorescent red films

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A large number of diketopyrrolopyrrole (DPP) compounds showing aggregation induced emission (AIE) have been reported in the past few years. However, although DPP compounds exhibited AIE and excellent luminescence properties, their luminescence properties in solid or film states were not much focused on. Here we synthesized and characterized a series of DPP compounds with triphenylamine (TPA) moieties to investigate the AIE properties in the solid film state depending on the functional groups (TPA, BTPA, and MTPA) attached to the TPA moieties. T2 and D2 thin films showed excellent fluorescence quantum yields of 31% and 26%, respectively, compared to an M2 thin film (9%). The restriction of an intramolecular rotation process could inhibit the aggregation induced quenching process and play a key role in achieving highly fluorescent molecules in the solid state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. M. Numata, T. Yasuda and C. Adachi, High efficiency pure blue thermally activated delayed fluorescence molecules having 10H-phenoxaborin and acridan units, Chem. Commun., 2015, 51, 9443–9446.

    Article  CAS  Google Scholar 

  2. C. W. Lee and J. Y. Lee, Above 30% External Quantum Efficiency in Blue Phosphorescent Organic Light-Emitting Diodes Using Pyrido[2,3-b]indole Derivatives as Host Materials, Adv. Mater., 2013, 25, 5450–5454.

    Article  CAS  Google Scholar 

  3. T. Chiba, Y. J. Pu and J. Kido, Solution-Processed White Phosphorescent Tandem Organic Light-Emitting Devices, J. Adv. Mater., 2015, 27, 4681–4687.

    Article  CAS  Google Scholar 

  4. H. Wang, L. Xie, Q. Peng, L. Meng, Y. Wang, Y. Yi and P. Wang, Novel Thermally Activated Delayed Fluorescence Materials–Thioxanthone Derivatives and Their Applications for Highly Efficient OLEDs, Adv. Mater., 2014, 26, 5198–5204.

    Article  CAS  Google Scholar 

  5. Y. Qi, Y. Wang, Y. Yu, Z. Liu, Y. Zhang, Y. Qi and C. Zhou, Exploring highly efficient light conversion agents for agricultural film based on aggregation induced emission effects, J. Mater. Chem. C, 2016, 4, 11291–11297.

    Article  CAS  Google Scholar 

  6. J. L. Banal, K. P. Ghiggino and W. W. H. Wong, Efficient light harvesting of a luminescent solar concentrator using excitation energy transfer from an aggregation-induced emitter, Phys. Chem. Chem. Phys., 2014, 16, 25358–25363.

    Article  CAS  Google Scholar 

  7. L. Hu, Y. Duan, Z. Xu, J. Yuan, Y. Dong and T. Han, Stimuli-responsive fluorophores with aggregation-induced emission: implication for dual-channel optical data storage, J. Mater. Chem. C, 2016, 4, 5334–5341.

    Article  CAS  Google Scholar 

  8. N. Schuwer and H. A. Klok, A Potassium-Selective Quartz Crystal Microbalance Sensor Based on Crown-Ether Functionalized Polymer Brushes, Adv. Mater., 2010, 22, 3251–3255.

    Article  Google Scholar 

  9. Y. Wang, R. Hu, W. Xi, F. Cai, S. Wang, Z. Zhu, R. Bai and J. Qian, Red emissive AIE nanodots with high two-photon absorption efficiency at 1040 nm for deep-tissue in vivo imaging, Biomed. Opt. Express, 2015, 6, 3783–3794.

    Article  CAS  Google Scholar 

  10. J. Wu, S. Sun, X. Feng, J. Shi, X. Y. Hu and L. Wang, Controllable aggregation-induced emission based on a tetraphenylethylene-functionalized pillar[5]arene via host–guest recognition, Chem. Commun., 2014, 50, 9122–9125.

    Article  CAS  Google Scholar 

  11. K.-Y. Pu and B. Liu, Conjugated Polyelectrolytes as Light-Up Macromolecular Probes for Heparin Sensing, Adv. Funct. Mater., 2009, 19, 277–284.

    Article  CAS  Google Scholar 

  12. T. P. I. Saragi, T. Spehr, A. Siebert, T. Fuhrmann-Lieker and J. Salbeck, Spiro Compounds for Organic Optoelectronics, Chem. Soc. Rev., 2007, 107, 1011–1065.

    Article  CAS  Google Scholar 

  13. B. Z. Tang, X. Zhan, G. Yu, P. P. S. Lee, Y. Liu and D. Zhu, Efficient blue emission from siloles, J. Mater. Chem., 2001, 11, 2974–2978.

    Article  CAS  Google Scholar 

  14. B. K. An, S. K. Kwon, S. D. Jung and S. Y. Park, Enhanced Emission and Its Switching in Fluorescent Organic Nanoparticles, J. Am. Chem. Soc., 2002, 124, 14410.

    Article  CAS  Google Scholar 

  15. B. Wang, N. He, B. Li, S. Jiang, Y. Qu, S. Qu and J. Hua, Aggregation-Induced Emission and Large Two-Photon Absorption Cross-Sections of Diketopyrrolopyrrole (DPP) Derivatives, Aust. J. Chem., 2012, 65, 387–394.

    Article  CAS  Google Scholar 

  16. E. Q. Guo, P. H. Ren, Y. L. Zhang, H. C. Zhang and W. J. Yang, Diphenylamine end-capped 1,4-diketo-3,6-diphenylpyrrolo[3,4-c]pyrrole (DPP) derivatives with large two-photon absorption cross-sections and strong twophoton excitation red fluorescence, Chem. Commun., 2009, 5859–5861.

  17. X. Y. Shen, Y. J. Wang, H. Zhang, A. Qin, J. Z. Sun and B. Z. Tang, Conjugates of tetraphenylethene and diketopyrrolopyrrole: tuning the emission properties with phenyl bridges, Chem. Commun., 2014, 50, 8747–8750.

    Article  CAS  Google Scholar 

  18. H. Zhou, W. Huang, L. Ding, S. Cai, B. Li and J. Su, New cyano-substituted organic dyes containing different electrophilic groups: aggregation-induced emission and large twophoton absorption cross section, Tetrahedron, 2014, 70, 7050–7056.

    Article  CAS  Google Scholar 

  19. Y. Li, F. Li, H. Zhang, Z. Xie, W. Xie, H. Xu, B. Li, F. Shen, L. Ye, M. Hanif, D. Ma and Y. Ma, Tight intermolecular packing through supramolecular interactions in crystals of cyanosubstituted oligo(para-phenylene vinylene): a key factor for aggregation-induced emission, Chem. Commun., 2007, 231–233.

  20. Z. Yu, Y. Duan, L. Cheng, Z. Han, Z. Zheng, H. Zhou, J. Wu and Y. Tian, Aggregation induced emission in the rotatable molecules: the essential role of molecular interaction, J. Mater. Chem., 2012, 22, 16927–16932.

    Article  CAS  Google Scholar 

  21. B. R. Gao, H. Y. Wang, Y. W. Hao, F. Fu, H. Fang, Y. Jiang, L. Wang, Q. Chen, H. Xia, L. Pan, Y. Ma and H. Sun, Time-Resolved Fluorescence Study of Aggregation-Induced Emission Enhancement by Restriction of Intramolecular Charge Transfer State, J. Phys. Chem. B, 2010, 114, 128–134.

    Article  CAS  Google Scholar 

  22. R. Hu, E. Lager, A. Aguilar-Aguilar, J. Liu, J. W. Y. Lam, H. H. Y. Sung, I. D. Williams, Y. Zhong, K. S. Wong, E. Peña-Cabrera and B. Z. Tang, Twisted Intramolecular Charge Transfer and Aggregation-Induced Emission of BODIPY Derivatives, J. Phys. Chem. C, 2009, 113, 15845–15853.

    Article  CAS  Google Scholar 

  23. T. E. Kaiser, H. Wang, V. Stepanenko and F. Würthner, Supramolecular construction of fluorescent J-aggregates based on hydrogen-bonded perylene dyes, Angew. Chem., Int. Ed., 2007, 46, 5541–5544.

    Article  CAS  Google Scholar 

  24. K. Huang, H. Wu, M. Shi, F. Li, T. Yi and C. Huang, Reply to comment on ‘aggregation-induced phosphorescent emission (AIPE) of iridium(III) complexes’: origin of the enhanced phosphorescence, Chem. Commun., 2009, 10, 1243–1245.

    Article  Google Scholar 

  25. Y. Jin, Y. Xu, Y. Liu, L. Wang, H. Jiang, X. Li and D. Cao, Synthesis of novel diketopyrrolopyrrole-based luminophores showing crystallization-induced emission enhancement properties, Dyes Pigm., 2011, 90, 311–318.

    Article  CAS  Google Scholar 

  26. M. Grzybowski and D. T. Gryko, Diketopyrrolopyrroles: Synthesis, Reactivity, and Optical Properties, Adv. Opt. Mater., 2015, 3, 280–320.

    Article  CAS  Google Scholar 

  27. T. Iwanaga, M. Ogawa, T. Yamauchi and S. Toyota, Intramolecular Charge-Transfer Interaction of Donor–Acceptor–Donor Arrays Based on Anthracene Bisimide, J. Org. Chem., 2016, 81, 4076–4080.

    Article  CAS  Google Scholar 

  28. J. Han, J. Sun, Y. Li, Y. Duan and T. Han, One-pot synthesis of a mechanochromic AIE luminogen: implication for rewritable optical data storage, J. Mater. Chem. C, 2016, 4, 9287–9293.

    Article  CAS  Google Scholar 

  29. J. Choi, C. Sakong, J. H. Choi, C. Yoon and J. P. Kim, Synthesis and characterization of some perylene dyes for dye-based LCD color filters, Dyes Pigm., 2011, 90, 82–88.

    Article  CAS  Google Scholar 

  30. H. Zhu, M. Li, J. Hu, X. Wang, J. Jialong, Q. Guo, C. Chen and A. Xia, Ultrafast Investigation of Intramolecular Charge Transfer and Solvation Dynamics of Tetrahydro[5]-helicene-Based Imide Derivatives, Sci. Rep., 2016, 6, 24313.

    Article  CAS  Google Scholar 

  31. B. Z. Tang, Y. Geng, J. W. Y. Lam, B. Li, X. Jing, X. Wang, F. Wang, A. B. Pakhomov and X. X. Zhang, Processible Nanostructured Materials with Electrical Conductivity and Magnetic Susceptibility: reparation and Properties of Maghemite/Polyaniline Nanocomposite Films, Chem. Mater., 1999, 11, 1581–1589.

    Article  CAS  Google Scholar 

  32. J. Gierschner, L. Lüer, B. Milián-Medina, D. Oelkrug and H. Egelhaaf, Highly Emissive H-Aggregates or Aggregation-Induced Emission Quenching? The Photophysics of All-Trans para-Distyrylbenzene, J. Phys. Chem. Lett., 2013, 4, 2686–2697.

    Article  CAS  Google Scholar 

  33. G. E. Dobretsova, T. I. Syrejschikova and N. V. Smolina, On mechanisms of fluorescence quenching by water, Biophysics, 2014, 59, 183–188.

    Article  Google Scholar 

  34. M. Yang, D. Xu, W. Xi, L. Wang, J. Zheng, J. Huang, J. Jhang, H. Zhou, J. Wu and Y. Tian, Aggregation-Induced Fluorescence Behavior of Triphenylamine-Based Schiff Bases: The Combined Effect of Multiple Forces, J. Org. Chem., 2013, 78, 10344–10359.

    Article  CAS  Google Scholar 

  35. J. Bujdák, Hybrid systems based on organic dyes and clay minerals: Fundamentals and potential, Clay Miner., 2015, 50, 549–571.

    Article  Google Scholar 

  36. F. Zhang, K. Jiang, J. Huang, C. Yu, S. Li, M. Chen, L. Yang and Y. Son, A novel compact DPP dye with enhanced light harvesting and charge transfer properties for highly efficient DSCs, J. Mater. Chem. A, 2013, 1, 4858–4863.

    Article  CAS  Google Scholar 

  37. Q. Zhang, H. Kuwabara, W. J. Potscavage Jr., S. Huang, Y. Hatae, T. Shibata and C. Adachi, Anthraquinone-Based Intramolecular Charge-Transfer Compounds: Computational Molecular Design, Thermally Activated Delayed Fluorescence, and Highly Efficient Red Electroluminescence, J. Am. Chem. Soc., 2014, 136, 18070–18081.

    Article  CAS  Google Scholar 

  38. F. Ito, Y. Kogasaka and K. Yamamoto, Fluorescence Spectral Changes of Perylene in Polymer Matrices during the Solvent Evaporation Process, J. Phys. Chem. B, 2013, 117, 3675–3681.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Pil Kim.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c8pp00403j

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, T.G., Kim, J.Y., Namgoong, J.W. et al. Aggregation induced emission of diketopyrrolopyrrole (DPP) derivatives for highly fluorescent red films. Photochem Photobiol Sci 18, 1064–1074 (2019). https://doi.org/10.1039/c8pp00403j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00403j

Navigation