Skip to main content
Log in

A new automated solar disc for water disinfection by pasteurization

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A new automated Solar Water Pasteurization Disc of double reflection of 3.8 and 1.3 m in diameter for the first and second reflectors has been erected and tested for performing microbiological disinfection of water in a simple, efficient, and continuous treatment in Brazil. The disc was constructed with a light weight aluminum frame and low-cost materials such as iron and small mirrors of 10 × 10 cm for easy assembly and replacement. The solar disc is automated for solar azimuth tracking and free of any connection to the electrical network. Experiments were conducted in summer and autumn with an average solar radiation of 150 W m−2, and the solar disc achieved a water flow of 60 litres per hour at temperatures above 60 °C. The water showed 100% disinfection effectiveness in tests with Escherichia coli. Therefore, this solar disc produces 315 litres of safe water between 10:00 and 15:00 h in the Brazilian Southeast. The solar disc’s low relative weight, portability, and lack of connection to the electricity grid and production of drinking water for one family per day make it possible to consider its use in rural areas that are poor and difficult to access.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WHO/UNICEF, 25 YEARS Progress on Sanitation and Drinking Water: 2015 Update and MDG Assessment, NY UNICEF World Heal. Organ., New York, 2015, p. 4.

  2. UN Water, Integrated Monitoring Guide for Sustainable Development Goal 6 on Water and Sanitation, Good practices for country monitoring systems, Version 6, 2017.

  3. United Nations, The Millennium Development Goals Report, United Nations, 2015, p. 72.

  4. S. T. McCoy and J. M. VanBriesen, Comparing Spatial and Temporal Diversity of Bacteria in a Chlorinated Drinking Water Distribution System, Environ. Eng. Sci., 2014, 31, 32–41.

    Article  CAS  Google Scholar 

  5. K. G. McGuigan, R. M. Conroy, H. J. Mosler, M. du Preez, E. Ubomba-Jaswa and P. Fernandez-Ibañez, J. Hazard. Mater., 2012, 235236, 29–46.

    Article  Google Scholar 

  6. M. Castro-Alférez, M. Inmaculada Polo-López, J. Marugán and P. Fernández-Ibáñez, Validation of a solar-thermal water disinfection model for Escherichia coli inactivation in pilot scale solar reactors and real conditions, Chem. Eng. J., 2018, 331, 831–840.

    Article  Google Scholar 

  7. B. Reyneke, T. E. Cloete, S. Khan and W. Khan, Rainwater harvesting solar pasteurization treatment systems for the provision of an alternative water source in peri-urban informal settlements, Environ. Sci.: Water Res. Technol., 2018, 4, 291–302.

    CAS  Google Scholar 

  8. G. Carielo, G. Calazans, G. Lima and C. Tiba, Solar water pasteurizer: Productivity and treatment efficiency in microbial decontamination, Renewable Energy, 2017, 105, 257–269.

    Article  Google Scholar 

  9. A. Strauss, P. H. Dobrowsky, T. Ndlovu, B. Reyneke and W. Khan, Comparative analysis of solar pasteurization versus solar disinfection for the treatment of harvested rainwater, BMC Microbiol., 2016, 16, 289.

    Article  Google Scholar 

  10. B. Sizirici, Modified biosand filter coupled with a solar water pasteurizer: Decontamination study, J. Water Process Eng., 2018, 23, 277–284.

    Article  Google Scholar 

  11. B. Reyneke, P. H. Dobrowsky, T. Ndlovu, S. Khan and W. Khan, EMA-qPCR to monitor the efficiency of a closed-coupled solar pasteurization system in reducing Legionella contamination of roof-harvested rainwater, Sci. Total Environ., 2016, 553, 662–670.

    Article  CAS  Google Scholar 

  12. A. Amsberry, C. Tyler, W. Steinhauff, J. Pommerenck and A. T. F. Yokochi, Simple continuous-flow device for combined solar thermal pasteurisation and solar disinfection for water sterilisation, Journal of Humanitarian Engineering, 2012, 3, 1–7.

    Google Scholar 

  13. B. Reyneke, T. E. Cloete, S. Khan and W. Khan, Rainwater harvesting solar pasteurization treatment systems for the provision of an alternative water source in peri-urban informal settlements, Environ. Sci.: Water Res. Technol., 2018, 4, 291–302.

    CAS  Google Scholar 

  14. R. Bigoni, S. Kötzsch, S. Sorlini and T. Egli, Solar water disinfection by a Parabolic Trough Concentrator (PTC): Flow-cytometric analysis of bacterial inactivation, J. Cleaner Prod., 2014, 67, 62–71.

    Article  Google Scholar 

  15. G. Carielo da Silva, C. Tiba and G. M. T. Calazans, Solar pasteurizer for the microbiological decontamination of water, Renewable Energy, 2016, 87, 711–719.

    Article  CAS  Google Scholar 

  16. S. Amara, T. Baghdadli, S. Knapp and B. Nordell, Legionella disinfection by solar concentrator system, Renewable Sustainable Energy Rev., 2017, 70, 786–792.

    Article  Google Scholar 

  17. R. Abbas, M. J. Montes, M. Piera and J. M. Martínez-Val, Solar radiation concentration features in Linear Fresnel Reflector arrays, Energy Convers. Manage., 2012, 54, 133–144.

    Article  Google Scholar 

  18. Cruz Y Bomant, S. L., Disco colector de radiación solar, concentrador de múltiples haces independientes de rayos reflejados especularmente sobre un plano receptor fijo, Pat. 201200347, 2013.

  19. S. A. Kalogirou, Solar Energy Collectors (cap.3), in Sol. Energy Eng, Elsevier, 2nd edn, 2014, pp. 125–220.

  20. P. R. Hunter, Drinking water and diarrhoeal disease due to Escherichia coli, J. Water Health, 2003, 1, 65–72.

    Article  Google Scholar 

  21. N. J. Ashbolt, Microbial contamination of drinking water and disease outcomes in developing regions, Toxicology, 2004, 198, 229–238.

    Article  CAS  Google Scholar 

  22. A. T. Spinks, R. H. Dunstan, T. Harrison, P. Coombes and G. Kuczera, Thermal inactivation of water-borne pathogenic and indicator bacteria at sub-boiling temperatures, Water Res., 2006, 40, 1326–1332.

    Article  CAS  Google Scholar 

  23. J. P. Abraham, B. D. Plourde and W. J. Minkowycz, Continuous flow solar thermal pasteurization of drinking water: Methods, devices, microbiology, and analysis, Renewable Energy, 2015, 81, 795–803.

    Article  Google Scholar 

  24. P. H. Dobrowsky, M. Carstens, J. De Villiers, T. E. Cloete and W. Khan, Efficiency of a closed-coupled solar pasteurization system in treating roof harvested rainwater, Sci. Total Environ., 2015, 536, 206–214.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Domingos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domingos, M., Sanchez, B., Vieira-da-Motta, O. et al. A new automated solar disc for water disinfection by pasteurization. Photochem Photobiol Sci 18, 905–911 (2019). https://doi.org/10.1039/c8pp00316e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00316e

Navigation