Skip to main content
Log in

A new continuous-flow solar water disinfection system inactivating cysts of Acanthamoeba castellanii, and bacteria

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Solar water disinfection (SODIS) is an effective and inexpensive microbiological water treatment technique, applicable to communities lacking access to safely managed drinking water services, however, the lower volume of treated water per day (< 2.5 L per batch) is a limitation for the conventional SODIS process. To overcome this limitation, a continuous-flow solar water disinfection system was developed and tested for inactivation of Acanthamoeba castellanii cysts and Escherichia coli, Salmonella Typhimurium, Enterococcus faecalis, and Pseudomonas aeruginosa. The system consisted of a solar heater composed of a cylindrical-parabolic concentrator and a UV irradiator formed by a fresnel-type flat concentrator combined with a cylindrical-parabolic concentrator. Deionized water with low or high turbidity (< 1 or 50 nephelometric turbidity unit (NTU) where previously contaminated by 108 Cysts/L or 105–106 CFU/mL of each of four bacterial species. Then was pumped from the heating tank flowing through the heater and through the UV irradiator, then returning to the heating tank, until reaching 45, 55, 60 or 70 °C. The water was kept at the desired temperature, flowing through the UV irradiator for 0.5 and 10 min. Trophozoites were not recovered from cysts (during 20 days of incubation) when water with  < 1 NTU was exposed to UV and 60 °C for 0.5 min. In water with 50 NTU, the same result was obtained after 10 min. In water with < 1 NTU, the inactivation of all bacteria was achieved when the water with < 1 NTU was exposed to 55 °C and UV for 0.5 min; in water, with 50 NTU the same result was achieved by exposure to 60 °C and UV for 0.5 min. The prototype processes 1 L of water every 90s. The system is effective and has the potential to be applied as an alternative to the large-scale public drinking water supply.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. McGuigan, K. G., Conroy, R. M., Mosler, H., Du Preez, M., Ubomba-Jaswa, E., & Fernandez-Ibañez, P. (2012). Solar water disinfection (SODIS): a review from bench-top to roof-top. Journal of Hazardous Materials, 235(236), 29–46.

    Article  Google Scholar 

  2. Reyneke, B., Cloete, T. E., Khan, S., & Khan, W. (2018). Rainwater harvesting solar pasteurization treatment systems for the provision of an alternative water source in peri-urban informal settlements. Environmental Science Water Research and Technology, 4, 291–302.

    Article  CAS  Google Scholar 

  3. Pichel, N., & VivarM, M. (2019). Fuentes, the problem of drinking water access: a review of disinfection technologies with an emphasis on solar treatment methods. Chemosphere, 218, 1014–1030.

    Article  CAS  Google Scholar 

  4. McGuigan, K. G., Samaiyar, P., Du Preez, M., & Conroy, R. M. (2011). High compliance randomized controlled field trial of solar disinfection of drinking water and its impact on childhood diarrhea in rural Cambodia. Environmental Science and Technology, 45(18), 7862–7867.

    Article  CAS  Google Scholar 

  5. Aksozek, A., Mcclellan, K., Howard, K., Niederkorn, J. Y., & Alizadeh, H. (2002). Resistance of Acanthamoeba castellanii cysts to physical, chemical, and radiological conditions. Journal of Parasitology, 88(3), 621–623.

    Article  CAS  Google Scholar 

  6. Vivar, M., Pichel, N., Fuentes, M., & López-Vargas, A. (2017). Separating the UV and thermal components during real-time solar disinfection experiments: the effect of temperature. Solar Energy, 146, 334–341.

    Article  Google Scholar 

  7. Castro-Alférez, M., Polo-López, M. I., & Fernández-Ibáñe, P. (2016). Intracellular mechanisms of solar water disinfection. Scientific Reports, 6, 38145.

    Article  Google Scholar 

  8. Castro-Alférez, M., Polo-López, M. I., Marugán, J., & Fernández-Ibáñez, P. (2017). Mechanistic modeling of UV and mild-heat synergistic effect on solar water disinfection. Chemical Engineering Journal, 316, 111–120.

    Article  Google Scholar 

  9. KulkarniA, A., Kapley, R. S., Dhodapkar, P., & Nagababu, S. R. (2019). Plasmonics driven engineered pasteurizers for solar water disinfection (SWADIS). Journal of Hazardous Materials, 369, 474–482.

    Article  Google Scholar 

  10. Mbonimpa, E. G., Vadheim, B., & Blatchley, E. R., III. (2012). Continuous-flow solar UVB disinfection reactor for drinking water. Water Research, 46, 2344–2354.

    Article  CAS  Google Scholar 

  11. Gill, L. W., & Price, C. (2010). Preliminary observations of a continuous flow solar disinfection system for a rural community in Kenya. Energy, 35(12), 4607–4611.

    Article  Google Scholar 

  12. Bigoni, R., Kötzsch, S., Sorlini, S., & Egli, T. (2014). Solar water disinfection by a parabolic trough concentrator (PTC): flow-cytometric analysis of bacterial inactivation. Journal of Cleaner Production, 67, 62–71.

    Article  Google Scholar 

  13. D. S. G. Carielo C. TIBA, G. M. T. . (2016). Calazans, Solar pasteurizer for the microbiological decontamination of water. Renew Energy, 87, 711–719.

    Article  Google Scholar 

  14. Domingos, M., Sanchez, B., Vieira-DA-Motta, O., Samarão, S. S., & Canela, M. C. (2018). A new automated solar disc for water disinfection by pasteurization. Photochemical and Photobiological Sciences, 18, 905–911.

    Article  Google Scholar 

  15. Thomas, V., Bouchez, T., Nicolas, V., Robert, S., Loret, J. F., & Lévi, Y. (2004). Amoebae in domestic water systems: resistance to disinfection treatments and implication in Legionella persistence. Journal of Applied Microbiology, 97, 950–963.

    Article  CAS  Google Scholar 

  16. Sriram, R., Shoff, M., Booton, G., Fuerst, P., & Visvesvara, G. S. (2008). Survival of Acanthamoeba cysts after desiccation for more than 20 years. Journal of Clinical Microbiology, 46(12), 4045–4048.

    Article  Google Scholar 

  17. Cervero-Aragó, S., Rodríuez-Marínez, S., Canals, O., Salvadó, H., & Araujo, R. M. (2013). Effect of thermal treatment on free-living amoeba inactivation. Journal of Applied Microbiology, 116(3), 1364–5072.

    Google Scholar 

  18. Thomas, V., McDonnell, G., Denyer, S. P., & Maillard, J. Y. (2010). Free-living amoebae and their intracellular pathogenic microorganisms: risks for water quality. FEMS Microbiology Reviews, 34, 231–259.

    Article  CAS  Google Scholar 

  19. Berk, S. G., Faulkner, G., Garduno, E., Joy, M. C., Ortiz-Jimenez, M. A., & Garduno, R. A. (2008). Packaging of live Legionella pneumophila into pellets expelled by Tetrahymena spp. does not require bacterial replication and depends on a Dot/Icm-mediated survival mechanism. Applied and Environmental Microbiology, 74, 2187–2199.

    Article  CAS  Google Scholar 

  20. Castro-Alférez, M., Polo-López, M. I., Marugán, J., & Fernández-Ibáñez, P. (2018). Validation of a solar-thermal water disinfection model for Escherichia coli inactivation in pilot scale solar reactors and real conditions. Chemical Engineering Journal, 331, 831–840.

    Article  Google Scholar 

  21. Ghodbane, M., Boumeddane, B., Said, Z., & Bellos, E. (2019). A numerical simulation of a linear Fresnel solar reflector directed to produce steam for the power plant. Journal of Cleaner Production, 231, 494–508.

    Article  Google Scholar 

  22. Rashid, A. (2018). Use of a parabolic trough collector in the Kingdom of Bahrain conditions for water desalination in sustainability and resilience conference: mitigating risks and emergency planning. KnE Engineering, 3, 122–134.

    Article  Google Scholar 

  23. S. G. Kandlikar, & S. K. Vij. (1978) Geometrical aspects of a cylindrical parabolic collector. In Proceedings of the International Solar Energy Congress, New Delhi, India, pp. (1254–1258). Oxford: Pergamon Press

  24. Norouzi, A. M., Siavashi, M., & Oskouei, M. H. K. (2020). Efficiency enhancement of the parabolic trough solar collector using the rotating absorber tube and nanoparticles. Renewable Energy, 145, 569–584.

    Article  CAS  Google Scholar 

  25. Salvadori, G., Leccese, F., Lista, D., Burattini, C., & Bisegna, F. (2020). Use of smartphone apps to monitor human exposure to solar radiation: comparison between predicted and measured UV index values. Environmental Research, 183, 109274.

    Article  CAS  Google Scholar 

  26. Gómez-Couso, H., Fontán-Saínz, M., Sichel, C., Fernández-Ibáñez, P., & Ares-Mazás, E. (2009). Efficacy of the solar water disinfection method in turbid waters experimentally contaminated with Cryptosporidium parvum oocysts under real field conditions. Science of the Total Environment, 14(6), 620–627.

    Google Scholar 

  27. Dawney, B., & Pearce, J. M. (2012). Optimizing the solar water disinfection (SODIS) method by decreasing turbidity with NaCl. Journal of Water Sanitation Hygience and Development, 2(2), 87–94.

    Article  CAS  Google Scholar 

  28. Hammoudeh, S. M., Hammoudeh, A. M., & Hamoudi, R. (2019). High-throughput quantification of the effect of DMSO on the viability of lung and breast cancer cells using an easy-to-use spectrophotometric trypan blue-based assay. Histochemistry and Cell Biology, 152(1), 75–84.

    Article  CAS  Google Scholar 

  29. Garre, A., Egea, J. A., Esnoz, A., Palop, A., & Fernandez, P. S. (2019). Tail or artefact? Illustration of the impact that uncertainty of the serial dilution and cell enumeration methods has on microbial inactivation. International Food Research Journal, 119, 76–83.

    Article  CAS  Google Scholar 

  30. Garajová, M., Mrva, M., Vaškovicová, N., Martinka, M., Melicherová, J., & Valigurová, A. (2019). Cellulose fibrils formation and organisation of cytoskeleton during encystment are essential for Acanthamoeba cyst wall architecture. Scientific Reports, 9, 4466.

    Article  Google Scholar 

  31. Ludwig, I. H., Meisler, D. M., Rutherford, I., Bican, F. E., Langston, R. H., & Visvesvara, G. S. (1986). Susceptibility of Acanthamoeba to soft contact lens disinfection systems. Investigaaive Ophthalmology and Visual Science, 27, 626–628.

    CAS  Google Scholar 

  32. Coulon, C., Collignon, A., McDonnell, G., & Thomas, V. (2010). Resistance of Acanthamoeba cysts to disinfection treatments used in health care settings. Journal of Clinical Microbiology, 48, 2689–2697.

    Article  Google Scholar 

  33. Heaselgrave, W., & Kilvington, S. (2011). The efficacy of simulated solar disinfection (SODIS) against Ascaris, Giardia, Acanthamoeba, Naegleria, Entamoeba and Cryptosporidium. Acta Tropica, 119, 138–143.

    Article  Google Scholar 

  34. Coohill, T. P., & Sagripanti, J. L. (2008). Overview of the Inactivation by 254 nm ultraviolet radiation of bacteria with particular relevance to biodefense. Journal of Photochemistry and Photobiology, 84(5), 1084–1090.

    CAS  Google Scholar 

  35. Mora, A. S., & Mohseni, M. (2018). Temperature dependence of the absorbance of 185 nm photons by water and commonly occurring solutes and its influence on the VUV advanced oxidation process. Environmental Science: Water Research and Technology, 4, 1303–1309.

    Google Scholar 

  36. Chung, K.-H., Kim, B.-J., Kim, S.-J., Park, Y.-K., & Jung, S.-C. (2020). Correlation of hydrogen generation and optical emission properties of plasma in water photolysis on perovskite photocatalysts. International Journal of Hydrogen Energy, 45(15), 8595–8604.

    Article  CAS  Google Scholar 

  37. Remucal, C. K., & Manley, D. (2016). Emerging investigators series: the efficacy of chlorine photolysis as an advanced oxidation process for drinking water treatment. Environmental Science: Water Research and Technology, 2, 565–579.

    CAS  Google Scholar 

  38. Nakagawa, H., Koike, N., Ehara, T., Hattori, T., Narimatsu, A., Kumakura, S., & Goto, H. (2019). Corticosteroid eye drop instillation aggravates the development of Acanthamoeba keratitis in rabbit corneas inoculated with Acanthamoeba and bacteria. Scientific Reports, 9(1), 12821.

    Article  Google Scholar 

  39. WHO (2011). Guidelines for drinking-water quality, 4th edn. ISBN 9789241548151. https://www.who.int/water_sanitation_health/publications/2011/dwq_guidelines/en/. Accessed 5 Dec 2020

  40. Gomes, T. S., Vaccaro, L., Magnet, M., Izquierdo, F., Ollero, D., Martínez-Fernández, C., et al. (2020). Presence and interaction of free-living amoebae and amoeba-resisting bacteria in water from drinking water treatment plants. Science of the Total Environment, 719, 137080.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

To CAPES (GCUB/ProAfri/nº001/2018) for the scholarship for Beni J.M. Chaúque and the PPGMAA for some financial support in the construction of the prototype.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marilise B. Rott.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaúque, B.J.M., Benetti, A.D., Corção, G. et al. A new continuous-flow solar water disinfection system inactivating cysts of Acanthamoeba castellanii, and bacteria. Photochem Photobiol Sci 20, 123–137 (2021). https://doi.org/10.1007/s43630-020-00008-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-020-00008-4

Navigation