Skip to main content
Log in

Photo-oxidative and photo-reductive capabilities of ilmenite-rich black sand concentrates using methyl orange as a probe molecule

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Ilmenite-rich black sands from an alluvial deposit of Barbacoas (Nariño, Colombia) were used as a natural source aiming to obtain a low-cost and highly available photocatalyst. Mineral concentrates were obtained by gravimetric concentration in a Wilfley table (deck tilt angle: 11–14°) followed by dry magnetic or wet electromagnetic separation. Afterwards, the particle size was manually reduced down to −325 mesh. Rietveld refinements using X-ray diffraction data showed that the highest purity achieved was 93.46% of ilmenite (FeTiO3). Scanning electron microscopy coupled with energy dispersive X-ray spectroscopy revealed a polyhedral morphology with an average grain size of 1.33–2.27 µm, granular inclusions of aluminosilicates and appreciable quantities of manganese. The band-gap values determined by UV-Vis diffuse reflectance spectroscopy were underestimated compared to those reported in the literature, given the impurities in the samples and their optical behavior. Photoluminescence experiments provided a band-gap of 2.68 eV. The photo-oxidative and photo-reductive capabilities of the concentrates were evaluated in the degradation of methyl orange in aqueous solution under UV irradiation. 99% of discoloration was achieved after 50 min for oxidation and after 20 min for reduction, showing the potential of ilmenite-rich concentrates as photocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. V. Dozzi and E. Selli, J. Photochem. Photobiol., C, 2013, 14, 13–28.

    Article  CAS  Google Scholar 

  2. V. Etacheri, C. Di Valentin, J. Schneider, D. Bahnemann and S. C. Pillai, J. Photochem. Photobiol., C, 2015, 25, 1–29.

    Article  CAS  Google Scholar 

  3. E. Moctezuma, B. Zermeño, E. Zarazua, L. M. Torres-Martínez and R. García, Top. Catal., 2011, 54, 496–503.

    Article  CAS  Google Scholar 

  4. Y. R. Smith, K. Joseph Antony Raj, V. Ravi Subramanian and B. Viswanathan, Colloids Surf., A, 2010, 367, 140–147.

    Article  CAS  Google Scholar 

  5. F. Vasiliu, L. Diamandescu, D. Macovei, C. M. Teodorescu, D. Tarabasanu-Mihaila, A. M. Vlaicu and V. Parvulescu, Top. Catal., 2009, 52, 544–556.

    Article  CAS  Google Scholar 

  6. M. E. Zarazúa-Morín, L. M. Torres-Martínez, E. Moctezuma, I. Juárez-Ramírez and B. B. Zermeño, Res. Chem. Intermed., 2016, 42, 1029–1043.

    Article  CAS  Google Scholar 

  7. S. Mozia, A. Heciak and A. W. Morawski, J. Photochem. Photobiol., A, 2010, 216, 275–282.

    Article  CAS  Google Scholar 

  8. B. Tryba, Int. J. Photoenergy, 2008, 2008, 1–15.

    Article  Google Scholar 

  9. F. X. Ye, T. Tsumura, K. Nakata and A. Ohmori, Mater. Sci. Eng., B, 2008, 148, 154–161.

    Article  CAS  Google Scholar 

  10. Y. H. Chen, J. Non-Cryst. Solids, 2011, 357, 136–139.

    Article  CAS  Google Scholar 

  11. T. Tao, Y. Chen, D. Zhou, H. Zhang, S. Liu, R. Amal, N. Sharma and A. M. Glushenkov, Chem. –Eur. J., 2013, 19, 1091–1096.

    Article  CAS  PubMed  Google Scholar 

  12. T. Tao, A. M. Glushenkov, H. Liu, Z. Liu, X. J. Dai, H. Chen, S. P. Ringer and Y. Chen, J. Phys. Chem. C, 2011, 17297–17302.

  13. A. T. Raghavender, N. Hoa Hong, K. Joon Lee, M.-H. Jung, Z. Skoko, M. Vasilevskiy, M. F. Cerqueira and A. P. Samantilleke, J. Magn. Magn. Mater., 2013, 331, 129–132.

    Article  CAS  Google Scholar 

  14. M. A. A. Schoonen, Y. Xu and D. R. Strongin, J. Geochem. Explor., 1998, 62, 201–215.

    Article  CAS  Google Scholar 

  15. Y. Xu and M. A. A. Schoonen, Am. Mineral., 2000, 85, 543–556.

    Article  CAS  Google Scholar 

  16. Y. H. Hu, Angew. Chem., Int. Ed., 2012, 51, 12410–12412.

    Article  CAS  Google Scholar 

  17. B. Gao, Y. J. Kim, A. K. Chakraborty and W. I. Lee, Appl. Catal., B, 2008, 83, 202–207.

    Article  CAS  Google Scholar 

  18. D. Gu, Y. Qin, Y. Wen, L. Qin and H. J. Seo, J. Taiwan Inst. Chem. Eng., 2017, 78, 431–437.

    Article  CAS  Google Scholar 

  19. Y. J. Kim, B. Gao, S. Y. Han, M. H. Jung, A. K. Chakraborty, T. Ko, C. Lee and W. I. Lee, J. Phys. Chem. C, 2009, 113, 19179–19184.

    Article  CAS  Google Scholar 

  20. X. Zhang, T. Li, Z. Gong, H. Zhao, L. Wang, J. Wan, D. Wang, X. Li and W. Fu, J. Alloys Compd., 2015, 653, 619–623.

    Article  CAS  Google Scholar 

  21. J. Ru, Y. Hua, C. Xu, J. Li, Y. Li, D. Wang, K. Gong, R. Wang and Z. Zhou, Ceram. Int., 2014, 40, 6799–6805.

    Article  CAS  Google Scholar 

  22. P. Siva, P. Prabu, M. Selvam, S. Karthik and V. Rajendran, Ionics, 2017, 23, 1871–1878.

    Article  CAS  Google Scholar 

  23. Z. Dai, P. Zhu, S. Yamamoto, A. Miyashita, K. Narum and H. Naramoto, Thin Solid Films, 1999, 339, 114–116.

    Article  CAS  Google Scholar 

  24. X. Wu, S. Qin and L. Dubrovinsky, J. Solid State Chem., 2010, 183, 2483–2489.

    Article  CAS  Google Scholar 

  25. W. Xiao, X. G. Lu, X. L. Zou, X. M. Wei and W. Z. Ding, Trans. Nonferrous Met. Soc. China, 2013, 23, 2439–2445.

    Article  CAS  Google Scholar 

  26. X.-F. Guan, J. Zheng, M.-L. Zhao, L.-P. Li and G.-S. Li, RSC Adv., 2013, 3, 13635–13635.

    Article  CAS  Google Scholar 

  27. Y. Chen, J. S. Williams, S. J. Campbell and G. M. Wang, Mater. Sci. Eng., A, 1999, 271, 485–490.

    Article  Google Scholar 

  28. D. Sethi, N. Jada, R. Kumar, S. Ramasamy, S. Pandey, T. Das, J. Kalidoss, P. S. Mukherjee and A. Tiwari, J. Photochem. Photobiol., B, 2014, 140, 69–78.

    Article  CAS  Google Scholar 

  29. W. Phoohinkong, W. Yimwan, W. Mekprasart and W. Pecharapa, Suranaree J. Sci. Technol., 2016, 23, 453–459.

    Google Scholar 

  30. P. Acosta-Santamaría, A. Ibatá-Soto and L. López-Vásquez, Int. J. Chem., Mol., Nucl., Mater. Metall. Eng., 2016, 10, 1335–1339.

    Google Scholar 

  31. P. García-Muñoz, G. Pliego, J. A. Zazo, A. Bahamonde and J. A. Casas, J. Environ. Chem. Eng., 2016, 4, 542–548.

    Article  CAS  Google Scholar 

  32. M. H. Habibi and A. H. Habibi, J. Ind. Eng. Chem., 2014, 20, 2964–2968.

    Article  CAS  Google Scholar 

  33. H. Wise and K. M. Sancier, Catal. Lett., 1991, 11, 277–284.

    Article  CAS  Google Scholar 

  34. G. T. Brown and J. R. Darwent, J. Phys. Chem., 1984, 88, 4955–4959.

    Article  CAS  Google Scholar 

  35. G. T. Brown and J. R. Darwent, J. Chem. Soc., Faraday Trans. 1, 1984, 80, 1631–1643.

    Article  CAS  Google Scholar 

  36. J. R. Darwent and A. Lepre, J. Chem. Soc., Faraday Trans. 2, 1986, 82, 1457–1468.

    Article  CAS  Google Scholar 

  37. O. Carp, C. L. Huisman and A. Reller, Prog. Solid State Chem., 2004, 32, 33–177.

    Article  CAS  Google Scholar 

  38. J. A. Linton, Y. Fei and A. Navrotsky, Am. Mineral., 1999, 84, 1595–1595.

    Article  CAS  Google Scholar 

  39. J. A. Linton, F. Yingwei and A. Navrotsky, Am. Mineral., 1997, 82, 639–642.

    Article  CAS  Google Scholar 

  40. A. Mehdilo, M. Irannajad and B. Rezai, Colloids Surf., A, 2013, 428, 111–119.

    Article  CAS  Google Scholar 

  41. R. López and R. Gómez, J. Sol-Gel Sci. Technol., 2012, 61, 1–7.

    Article  CAS  Google Scholar 

  42. B. M. Weckhuysen, Ultraviolet-Visible Spectroscopy, in In-situ Spectroscopy of Catalysts, ed. B. M. Weckhuysen, 2004, ch. 12, pp. 255–270, ISBN: 1-58883-026-8.

  43. J. L. Koenig, Experimental IR spectroscopy of polymers, in Spectroscopy of Polymers, ed. J. L. Koenig, Elsevier Science, New York, 2nd edn, 1999, ch. 3, pp. 77–145, ISBN: 9780444100313.

  44. K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura and K. Hata, Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 6044–6047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. J. Du, R. Devanathan, L. René Corrales and W. J. Weber, Comput. Theor. Chem., 2012, 987, 62–70.

    Article  CAS  Google Scholar 

  46. E. Gnani, S. Reggiani, R. Colle and M. Rudan, IEEE Trans. Electron Devices, 2000, 47, 1795–1803.

    Article  CAS  Google Scholar 

  47. R. Terki, G. Bertrand and H. Aourag, Microelectron. Eng., 2005, 81, 514–523.

    Article  CAS  Google Scholar 

  48. B. Rajamannan, S. Mugundan, G. Viruthagiri, N. Shanmugam, R. Gobi and P. Praveen, Spectrochim. Acta, Part A, 2014, 128, 218–224.

    Article  CAS  Google Scholar 

  49. C. S. Foote, J. Valentine, A. Greenberg and J. F. Liebman, Active oxygen in chemistry, Springer Science & Business Media, 2012.

  50. T. Iwasita, Electrochim. Acta, 2002, 47, 3663–3674.

    Article  CAS  Google Scholar 

  51. L. Yu, J. Xi, H. T. Chan, T. Su, D. L. Phillips and W. K. Chan, Phys. Chem. Chem. Phys., 2012, 14, 3589–3595.

    Article  CAS  PubMed  Google Scholar 

  52. D. A. Armstrong, R. E. Huie, S. Lymar, W. H. Koppenol, G. Merényi, P. Neta, D. M. Standbury, S. Steenken and P. Wardman, BioInorg. React. Mech., 2013, 9, 59–61.

    CAS  Google Scholar 

  53. S. Hisaindee, M. A. Meetani and M. A. Rauf, Trends Anal. Chem., 2013, 49, 31–44.

    Article  CAS  Google Scholar 

  54. N. Guettaï and H. Ait Amar, Desalination, 2005, 185, 427–437.

    Article  CAS  Google Scholar 

  55. R. Camarillo and J. Rincón, Chem. Eng. Technol., 2011, 34, 1675–1684.

    Article  CAS  Google Scholar 

  56. S. Oros-Ruiz, R. Gómez, R. López, A. Hernández-Gordillo, J. A. Pedraza-Avella, E. Moctezuma and E. Pérez, Catal. Commun., 2012, 21, 72–76.

    Article  CAS  Google Scholar 

  57. S. Xie, P. Huang, J. J. Kruzic, X. Zeng and H. Qian, Sci. Rep., 2016, 6, 1–10.

    Article  CAS  Google Scholar 

  58. Y. Badr and M. A. Mahmoud, J. Phys. Chem. Solids, 2007, 68, 413–419.

    Article  CAS  Google Scholar 

  59. A. S. Özen, V. Aviyente and R. A. Klein, J. Phys. Chem. A, 2003, 107, 4898–4907.

    Article  CAS  Google Scholar 

  60. T. D. Nguyen, N. H. Phan, M. H. Do and K. T. Ngo, J. Hazard. Mater., 2011, 185, 653–661.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Marcela Cañas-Martínez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cañas-Martínez, D.M., Gauthier, G.H. & Pedraza-Avella, J.A. Photo-oxidative and photo-reductive capabilities of ilmenite-rich black sand concentrates using methyl orange as a probe molecule. Photochem Photobiol Sci 18, 912–919 (2019). https://doi.org/10.1039/c8pp00315g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00315g

Navigation