Skip to main content

Advertisement

Log in

Ta3N5/Co(OH)x composites as photocatalysts for photoelectrochemical water splitting

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Ta3N5 nanotubes (NTs) were obtained from nitridation of Ta2O5 NTs, which were grown directly on Ta foil through a 2-step anodization procedure. With Co(OH)x decoration, a photocurrent density as high as 2.3 mA cm−2 (1.23 V vs. NHE) was reached under AM1.5G simulated solar light; however, the electrode suffered from photocorrosion. More stable photoelectrochemical (PEC) performance was achieved by first loading Co(OH)x, followed by loading cobalt phosphate (Co–Pi) as double co-catalysts. The Co(OH)x/Co–Pi double co-catalysts may act as a hole storage layer that slows down the photocorrosion caused by the accumulated holes on the surface of the electrode. A “waggling” appearance close to the “mouth” of Ta2O5 NTs was observed, and may indicate structural instability of the “mouth” region, which breaks into segments after nitridation and forms a top layer of broken Ta3N5 NTs. A unique mesoporous structure of the walls of the Ta3N5 NTs, which is reported here the first time, is also a result of the nitridation process. We believe that the mesoporous structure makes it difficult for the nanotubes to be fully covered by the co-catalyst layer, hence rationalizing the remaining degradation by photocorrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. J. Detz, J. N. H. Reek and B. C. C. van der Zwaan, Energy Environ. Sci., 2018, 11, 1653–1669.

    Article  CAS  Google Scholar 

  2. S. J. Moniz, S. A. Shevlin, D. J. Martin, Z.-X. Guo and J. Tang, Energy Environ. Sci., 2015, 8, 731–759.

    Article  CAS  Google Scholar 

  3. A. Fujishima and K. Honda, Nature, 1972, 238, 37–38.

    Article  CAS  PubMed  Google Scholar 

  4. R. V. D. Krol and M. Grätzel, Photoelectrochemical hydrogen production, Springer, New York, 2012.

  5. H. J. Lewerenz, L. Peter and Royal Society of Chemistry (Great Britain), Photoelectrochemical water splitting: materials, processes and architectures, RSC Publishing, Cambridge, 2013.

  6. Z. Chen, H. N. Dinh and E. Miller, Photoelectrochemical water splitting standards, experimental methods, and protocols, Springer, New York, 2013.

  7. M. Xiao, S. Wang, S. Thaweesak, B. Luo and L. Wang, Engineering, 2017, 3, 365–378.

    Article  Google Scholar 

  8. I. Tunc, M. Bruns, H. Gliemann, M. Grunze and P. Koelsch, Surf. Interface Anal., 2010, 42, 835–841.

    Article  CAS  Google Scholar 

  9. D. Fermin, E. Ponomarev and L. Peter, J. Electroanal. Chem., 1999, 473, 192–203.

    Article  Google Scholar 

  10. X. Chen, S. Shen, L. Guo and S. S. Mao, Chem. Rev., 2010, 110, 6503–6570.

    Article  CAS  PubMed  Google Scholar 

  11. D. Chen, Z. Liu, M. Zhou, P. Wu and J. Wei, J. Alloys Compd., 2018, 742, 918–927.

    Article  CAS  Google Scholar 

  12. X. Yang, A. Wolcott, G. Wang, A. Sobo, R. C. Fitzmorris, F. Qian, J. Z. Zhang and Y. Li, Nano Lett., 2009, 9, 2331–2336.

    Article  CAS  PubMed  Google Scholar 

  13. J.-S. Lee, T. Kato, A. Fujishima and K. Honda, Bull. Chem. Soc. Jpn., 1984, 57, 1179–1183.

    Article  CAS  Google Scholar 

  14. H. Fan, X. Zhao, J. Yang, X. Shan, L. Yang, Y. Zhang, X. Li and M. Gao, Catal. Commun., 2012, 29, 29–34.

    Article  CAS  Google Scholar 

  15. J. Georgieva, S. Sotiropoulos, E. Valova, S. Armyanov and N. Karanasios, J. Electroanal. Chem., 2014, 727, 135–140.

    Article  CAS  Google Scholar 

  16. E. Valova, J. Georgieva, S. Armyanov, S. Sotiropoulos, A. Hubin, K. Baert and M. Raes, J. Electrochem. Soc., 2010, 157, D309–D315.

    Article  CAS  Google Scholar 

  17. T. Arai, M. Horiguchi, M. Yanagida, T. Gunji, H. Sugihara and K. Sayama, J. Phys. Chem. C, 2009, 113, 6602–6609.

    Article  CAS  Google Scholar 

  18. K. Sayama, A. Nomura, T. Arai, T. Sugita, R. Abe, M. Yanagida, T. Oi, Y. Iwasaki, Y. Abe and H. Sugihara, J. Phys. Chem. B, 2006, 110, 11352–11360.

    Article  CAS  PubMed  Google Scholar 

  19. X. Chen, L. Liu, Y. Y. Peter and S. S. Mao, Science, 2011, 1200448.

  20. N. Liu, C. Schneider, D. Freitag, M. Hartmann, U. Venkatesan, J. Müller, E. Spiecker and P. Schmuki, Nano Lett., 2014, 14, 3309–3313.

    Article  CAS  PubMed  Google Scholar 

  21. W. J. Chun, A. Ishikawa, H. Fujisawa, T. Takata, J. N. Kondo, M. Hara, M. Kawai, Y. Matsumoto and K. Domen, J. Phys. Chem. B, 2003, 107, 1798–1803.

    Article  CAS  Google Scholar 

  22. C. Zhen, R. Chen, L. Wang, G. Liu and H.-M. Cheng, J. Mater. Chem. A, 2016, 4, 2783–2800.

    Article  CAS  Google Scholar 

  23. E. Nurlaela, A. Ziani and K. Takanabe, Mater. Renew. Sust. Energy, 2016, 5, 18.

    Article  Google Scholar 

  24. P. Zhang, J. Zhang and J. Gong, Chem. Soc. Rev., 2014, 43, 4395–4422.

    Article  CAS  PubMed  Google Scholar 

  25. H. Dotan, K. Sivula, M. Gratzel, A. Rothschild and S. C. Warren, Energy Environ. Sci., 2011, 4, 958–964.

    Article  CAS  Google Scholar 

  26. G. V. Govindaraju, G. P. Wheeler, D. Lee and K.-S. Choi, Chem. Mater., 2017, 29, 355–370.

    Article  CAS  Google Scholar 

  27. L. Wang, N. T. Nguyen, X. Zhou, I. Hwang, M. S. Killian and P. Schmuki, ChemSusChem, 2015, 8, 2615–2620.

    Article  CAS  PubMed  Google Scholar 

  28. L. Wang, X. Zhou, N. T. Nguyen, I. Hwang and P. Schmuki, Adv. Mater., 2016, 28, 2432–2438.

    Article  CAS  PubMed  Google Scholar 

  29. Y. Li, L. Zhang, A. Torres-Pardo, J. M. González-Calbet, Y. Ma, P. Oleynikov, O. Terasaki, S. Asahina, M. Shima and D. Cha, Nat. Commun., 2013, 4, 2566.

    Article  PubMed  CAS  Google Scholar 

  30. H.-I. Kim, D. Monllor-Satoca, W. Kim and W. Choi, Energy Environ. Sci., 2015, 8, 247–257.

    Article  CAS  Google Scholar 

  31. S. Anantharaj, S. Ede, K. Karthick, S. S. Sankar, K. Sangeetha, P. Karthik and S. Kundu, Energy Environ. Sci., 2018, 11, 744–771.

    Article  CAS  Google Scholar 

  32. Q. Ding, F. Meng, C. R. English, M. Cabán-Acevedo, M. J. Shearer, D. Liang, A. S. Daniel, R. J. Hamers and S. Jin, J. Am. Chem. Soc., 2014, 136, 8504–8507.

    Article  CAS  PubMed  Google Scholar 

  33. S. P. Berglund, H. He, W. D. Chemelewski, H. Celio, A. Dolocan and C. B. Mullins, J. Am. Chem. Soc., 2014, 136, 1535–1544.

    Article  CAS  PubMed  Google Scholar 

  34. Y. Sun, C. Liu, D. C. Grauer, J. Yano, J. R. Long, P. Yang and C. J. Chang, J. Am. Chem. Soc., 2013, 135, 17699–17702.

    Article  CAS  PubMed  Google Scholar 

  35. C. G. Morales-Guio, K. Thorwarth, B. Niesen, L. Liardet, J. R. Patscheider, C. Ballif and X. Hu, J. Am. Chem. Soc., 2015, 137, 7035–7038.

    Article  CAS  PubMed  Google Scholar 

  36. F. F. Abdi and R. van de Krol, J. Phys. Chem. C, 2012, 116, 9398–9404.

    Article  CAS  Google Scholar 

  37. A. Kleiman-Shwarsctein, Y.-S. Hu, G. D. Stucky and E. W. McFarland, Electrochem. Commun., 2009, 11, 1150–1153.

    Article  CAS  Google Scholar 

  38. M. J. Kenney, M. Gong, Y. Li, J. Z. Wu, J. Feng, M. Lanza and H. Dai, Science, 2013, 342, 836–840.

    Article  CAS  PubMed  Google Scholar 

  39. N. S. Lewis, Science, 2007, 315, 798–801.

    Article  CAS  PubMed  Google Scholar 

  40. I. A. Moreno-Hernandez, C. A. MacFarland, C. G. Read, K. M. Papadantonakis, B. S. Brunschwig and N. S. Lewis, Energy Environ. Sci., 2017, 10, 2103–2108.

    Article  CAS  Google Scholar 

  41. N. Han, K. R. Yang, Z. Lu, Y. Li, W. Xu, T. Gao, Z. Cai, Y. Zhang, V. S. Batista and W. Liu, Nat. Commun., 2018, 9, 924.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. L. Wang, A. Mazare, I. Hwang and P. Schmuki, Electrochem. Commun., 2016, 72, 27–31.

    Article  CAS  Google Scholar 

  43. L. Wang, F. Dionigi, N. T. Nguyen, R. Kirchgeorg, M. Gliech, S. Grigorescu, P. Strasser and P. Schmuki, Chem. Mater., 2015, 27, 2360–2366.

    Article  CAS  Google Scholar 

  44. Y. Li, T. Takata, D. Cha, K. Takanabe, T. Minegishi, J. Kubota and K. Domen, Adv. Mater., 2013, 25, 125–131.

    Article  CAS  PubMed  Google Scholar 

  45. J. Hou, Z. Wang, C. Yang, H. Cheng, S. Jiao and H. Zhu, Energy Environ. Sci., 2013, 6, 3322–3330.

    Article  CAS  Google Scholar 

  46. K. Xu, A. Chatzitakis and T. Norby, Photochem. Photobiol. Sci., 2017, 16, 10–16.

    Article  CAS  PubMed  Google Scholar 

  47. A. Chatzitakis, M. Grandcolas, K. Xu, S. Mei, J. Yang, I. J. T. Jensen, C. Simon and T. Norby, Catal. Today, 2017, 287, 161–168.

    Article  CAS  Google Scholar 

  48. P. Roy, S. Berger and P. Schmuki, Angew. Chem., Int. Ed., 2011, 50, 2904–2939.

    Article  CAS  Google Scholar 

  49. H. A. El-Sayed and V. I. Birss, Nano Lett., 2009, 9, 1350–1355.

    Article  CAS  PubMed  Google Scholar 

  50. N. K. Allam, X. J. Feng and C. A. Grimes, Chem. Mater., 2008, 20, 6477–6481.

    Article  CAS  Google Scholar 

  51. X. Feng, T. J. LaTempa, J. I. Basham, G. K. Mor, O. K. Varghese and C. A. Grimes, Nano Lett., 2010, 10, 948–952.

    Article  CAS  PubMed  Google Scholar 

  52. Z. Su, S. Grigorescu, L. Wang, K. Lee and P. Schmuki, Electrochem. Commun., 2015, 50, 15–19.

    Article  CAS  Google Scholar 

  53. S. Grigorescu, B. Bärhausen, L. Wang, A. Mazare, J. E. Yoo, R. Hahn and P. Schmuki, Electrochem. Commun., 2015, 51, 85–88.

    Article  CAS  Google Scholar 

  54. Y. He, P. Ma, S. Zhu, M. Liu, Q. Dong, J. Espano, X. Yao and D. Wang, Joule, 2017, 1, 831–842.

    Article  CAS  Google Scholar 

  55. E. Garcia, J. Santos, E. Pereira and M. Freitas, J. Power Sources, 2008, 185, 549–553.

    Article  CAS  Google Scholar 

  56. D. K. Zhong, M. Cornuz, K. Sivula, M. Grätzel and D. R. Gamelin, Energy Environ. Sci., 2011, 4, 1759–1764.

    Article  CAS  Google Scholar 

  57. Q. Gao, S. Wang, Y. Ma, Y. Tang, C. Giordano and M. Antonietti, Angew. Chem., Int. Ed., 2012, 124, 985–989.

    Article  Google Scholar 

  58. D. A. Shirley, Phys. Rev. B: Solid State, 1972, 5, 4709.

    Article  Google Scholar 

  59. D. Regonini, C. Bowen, A. Jaroenworaluck and R. Stevens, Mater. Sci. Eng., R, 2013, 74, 377–406.

    Article  Google Scholar 

  60. C. Zhen, L. Wang, G. Liu, G. Q. M. Lu and H.-M. Cheng, Chem. Commun., 2013, 49, 3019–3021.

    Article  CAS  Google Scholar 

  61. D. Yokoyama, H. Hashiguchi, K. Maeda, T. Minegishi, T. Takata, R. Abe, J. Kubota and K. Domen, Thin Solid Films, 2011, 519, 2087–2092.

    Article  CAS  Google Scholar 

  62. M. Liao, J. Feng, W. Luo, Z. Wang, J. Zhang, Z. Li, T. Yu and Z. Zou, Adv. Funct. Mater., 2012, 22, 3066–3074.

    Article  CAS  Google Scholar 

  63. Y. Cong, H. S. Park, S. Wang, H. X. Dang, F.-R. F. Fan, C. B. Mullins and A. J. Bard, J. Phys. Chem. C, 2012, 116, 14541–14550.

    Article  CAS  Google Scholar 

  64. M. Li, W. Luo, D. Cao, X. Zhao, Z. Li, T. Yu and Z. Zou, Angew. Chem., Int. Ed., 2013, 52, 11016–11020.

    Article  CAS  Google Scholar 

  65. M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. Lau, A. R. Gerson and R. S. C. Smart, Appl. Surf. Sci., 2011, 257, 2717–2730.

    Article  CAS  Google Scholar 

  66. M. W. Kanan and D. G. Nocera, Science, 2008, 321, 1072–1075.

    Article  CAS  PubMed  Google Scholar 

  67. G. Liu, J. Shi, F. Zhang, Z. Chen, J. Han, C. Ding, S. Chen, Z. Wang, H. Han and C. Li, Angew. Chem., Int. Ed., 2014, 53, 7295–7299.

    Article  CAS  Google Scholar 

  68. G. Liu, P. Fu, L. Zhou, P. Yan, C. Ding, J. Shi and C. Li, Chem. –Eur. J., 2015, 21, 9624–9628.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Truls Norby.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, K., Chatzitakis, A., Jensen, I.J.T. et al. Ta3N5/Co(OH)x composites as photocatalysts for photoelectrochemical water splitting. Photochem Photobiol Sci 18, 837–844 (2019). https://doi.org/10.1039/c8pp00312b

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00312b

Navigation