Skip to main content
Log in

Automated on-line monitoring of the TiO2-based photocatalytic degradation of dimethyl phthalate and diethyl phthalate

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A fully automated on-line system for monitoring the TiO2-based photocatalytic degradation of dimethyl phthalate (DMP) and diethyl phthalate (DEP) using sequential injection analysis (SIA) coupled to liquid chromatography (LC) with UV detection was proposed. The effects of the type of catalyst (sol–gel, Degussa P25 and Hombikat), the amount of catalyst (0.5, 1.0 and 1.5 g L−1), and the solution pH (4, 7 and 10) were evaluated through a three-level fractional factorial design (FFD) to verify the influence of the factors on the response variable (degradation efficiency, %). As a result of FFD evaluation, the main factor that influences the process is the type of catalyst. Degradation percentages close to 100% under UV-vis radiation were reached using the two commercial TiO2 materials, which present mixed phases (anatase/rutile), Degussa P25 (82%/18%) and Hombikat (76%/24%). 60% degradation was obtained using the laboratory-made pure anatase crystalline TiO2 phase. The pH and amount of catalyst showed minimum significant effect on the degradation efficiencies of DMP and DEP. Greater degradation efficiency was achieved using Degussa P25 at pH 10 with 1.5 g L−1 catalyst dosage. Under these conditions, complete degradation and 92% mineralization were achieved after 300 min of reaction. Additionally, a drastic decrease in the concentration of BOD5 and COD was observed, which results in significant enhancement of their biodegradability obtaining a BOD5/COD index of 0.66 after the photocatalytic treatment. The main intermediate products found were dimethyl 4-hydroxyphthalate, 4-hydroxy-diethyl phthalate, phthalic acid and phthalic anhydride indicating that the photocatalytic degradation pathway involved the hydrolysis reaction of the aliphatic chain and hydroxylation of the aromatic ring, obtaining products with lower toxicity than the initial molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Khosravi and G. W. Price, Microchem. J., 2015, 121, 205–212.

    Article  CAS  Google Scholar 

  2. M. J. Silva, A. R. Slakman, J. A. Reidy, J. L. Preau, A. R. Herbert, E. Samandar, L. L. Needham and A. M. Calafat, J. Chromatogr. B, 2004, 805, 161–167.

    Article  CAS  Google Scholar 

  3. W. J. Peijnenburg and J. Struijs, Ecotoxicol. Environ. Saf., 2006, 63, 204–215.

    Article  CAS  PubMed  Google Scholar 

  4. J. Yang, Y. Li, Y. Wang, J. Ruan, J. Zhang and C. Sun, Trac, Trends Anal. Chem., 2015, 72, 10–26.

    Article  CAS  Google Scholar 

  5. M. Julinova and R. Slavik, J. Environ. Manage., 2012, 94, 13–24.

    Article  CAS  PubMed  Google Scholar 

  6. G. C. C. Yang, Y. H. Chiu and C. Wang, Electrochim. Acta, 2015, 181, 217–227.

    Article  CAS  Google Scholar 

  7. D. Salazar-Beltrán, L. Hinojosa-Reyes, E. Ruiz-Ruiz, A. Hernández-Ramírez and J. L. Guzmán-Mar, Food Anal. Methods, 2017, 11, 48–61.

    Article  Google Scholar 

  8. S. Net, A. Delmont, R. Sempere, A. Paluselli and B. Ouddane, Sci. Total Environ., 2015, 515–516, 162–180.

    Article  PubMed  CAS  Google Scholar 

  9. H. M. Zhao, H. Du, L. Xiang, Y. L. Chen, L. A. Lu, Y. W. Li, H. Li, Q. Y. Cai and C. H. Mo, Environ. Pollut., 2015, 206, 95–103.

    Article  CAS  PubMed  Google Scholar 

  10. P. Otero, S. K. Saha, S. Moane, J. Barron, G. Clancy and P. Murray, J. Chromatogr. B, 2015, 997, 229–235.

    Article  CAS  Google Scholar 

  11. U. Heudorf, V. Mersch-Sundermann and J. Angerer, Int. J. Hyg. Environ. Health, 2007, 210, 623–634.

    Article  CAS  PubMed  Google Scholar 

  12. T. Fierens, K. Servaes, H. M. Van, L. Geerts, H. S. De, I. Sioen and G. Vanermen, Food Chem. Toxicol., 2012, 50, 2575–2583.

    Article  CAS  PubMed  Google Scholar 

  13. D. Gao, Z. Li, Z. Wen and N. Ren, Chemosphere, 2014, 95, 24–32.

    Article  CAS  PubMed  Google Scholar 

  14. C. Pérez-Feás, M. C. Barciela-Alonso and P. Bermejo-Barrera, Microchem. J., 2011, 99, 108–113.

    Article  CAS  Google Scholar 

  15. B. L. Yuan, X. Z. Li and N. Graham, Water Res., 2008, 42, 1413–1420.

    Article  CAS  PubMed  Google Scholar 

  16. D. Walter, L. Hsu-Chuen, C. Shu-Fei, T. K. Kuan and H. Chihpin, J. Environ. Eng. Landsc., 2006, 16, 275–282.

    Google Scholar 

  17. N. Adhoum and L. Monser, Sep. Purif. Technol., 2004, 38, 233–239.

    Article  CAS  Google Scholar 

  18. F. Ma, S. Zhang, X. Yang, W. Guo, Y. Guo and M. Huo, Catal. Commun., 2012, 24, 75–79.

    Article  CAS  Google Scholar 

  19. S. Anandan, N. Pugazhenthiran, T. Lana-Villarreal, G. Lee and J. J. Wu, Chem. Eng. J., 2013, 231, 182–189.

    Article  CAS  Google Scholar 

  20. Y. Jing, L. Li, Q. Zhang, P. Lu, P. Liu and X. Lu, J. Hazard. Mater., 2011, 189, 40–47.

    Article  CAS  PubMed  Google Scholar 

  21. A. Haarstrick, O. M. Kut and E. Heinzle, Environ. Sci. Technol., 1996, 30, 817–824.

    Article  CAS  Google Scholar 

  22. Y. H. Chen, L. L. Chen and N. C. Shang, J. Hazard. Mater., 2009, 172, 20–29.

    Article  CAS  PubMed  Google Scholar 

  23. M. Borges, D. García, T. Hernández, J. Ruiz-Morales and P. Esparza, Catalysts, 2015, 5, 77–87.

    Article  CAS  Google Scholar 

  24. D. C. Hurum, A. G. Agrios, K. A. Gray, T. Rajh and M. C. Thurnauer, J. Phys. Chem. B, 2003, 107, 4545–4549.

    Article  CAS  Google Scholar 

  25. H. Hou, M. Shang, L. Wang, W. Li, B. Tang and W. Yang, Sci. Rep., 2015, 5, 1–9.

    Google Scholar 

  26. G. Li, L. Chen, M. E. Graham and K. A. Gray, J. Mol. Catal. A: Chem., 2007, 275, 30–35.

    Article  CAS  Google Scholar 

  27. A. Economou, TrAC, Trends Anal. Chem., 2005, 24, 416–425.

    Article  CAS  Google Scholar 

  28. C. Chávez-Moreno, L. Ferrer, L. Hinojosa-Reyes, A. Hernández-Ramírez, V. Cerda and J. Guzmán-Mar, J. Environ. Manage., 2013, 129, 377–383.

    Article  PubMed  CAS  Google Scholar 

  29. E. Guevara-Almaraz, L. Hinojosa-Reyes, A. Caballero-Quintero, E. Ruiz-Ruiz, A. Hernández-Ramírez and J. L. Guzmán-Mar, Chemosphere, 2015, 121, 68–75.

    Article  CAS  PubMed  Google Scholar 

  30. APHA, AWWA and WPCF, in Métodos normalizados para el análisis de aguas potables y residuales, ed. D. d. Santos, Madrid, España, 1992.

  31. A. Asha, A. Muthukrishnaraj and N. Balasubramanian, Int. J. Ind. Chem., 2014, 5, 1–6.

    Article  Google Scholar 

  32. K. Z. Abdalla and G. Hammam, Int. J. Sci. Bas. Appl. Res., 2014, 13, 42–48.

    Google Scholar 

  33. S. Kaneco, H. Katsumata, T. Suzuki and K. Ohta, Chem. Eng. J., 2006, 125, 59–66.

    Article  CAS  Google Scholar 

  34. C. Karunakaran, D. Vasumathi and P. Vinayagamoorthy, Indian J. Chem., 2015, 54A, 1076–1084.

    CAS  Google Scholar 

  35. J. Yu, G. Wang, B. Cheng and M. Zhou, Appl. Catal., B, 2007, 69, 171–180.

    Article  CAS  Google Scholar 

  36. D. S. Kim, S. J. Han and S. Y. Kwak, J. Colloid Interface Sci., 2007, 316, 85–91.

    Article  CAS  PubMed  Google Scholar 

  37. R. López and R. Gómez, J. Sol–Gel Sci. Technol., 2011, 61, 1–7.

    Article  CAS  Google Scholar 

  38. Z. Zhang, C. Wang, R. Zakaria and J. Y. Ying, J. Phys. Chem. B, 1998, 102, 10871–10878.

    Article  CAS  Google Scholar 

  39. M. Muneer, J. Theurich and D. Bahnemann, J. Photochem. Photobiol., A, 2001, 143, 213–219.

    Article  CAS  Google Scholar 

  40. M. N. Chong, B. Jin, C. W. Chow and C. Saint, Water Res., 2010, 44, 2997–3027.

    Article  CAS  PubMed  Google Scholar 

  41. D. Friedmann, C. Mendive and D. Bahnemann, Appl. Catal., B, 2010, 99, 398–406.

    Article  CAS  Google Scholar 

  42. J. M. Herrmann, Top. Catal., 2005, 34, 49–65.

    Article  CAS  Google Scholar 

  43. X. R. Xu, S. X. Li, X. Y. Li, J. D. Gu, F. Chen, X. Z. Li and H. B. Li, J. Hazard. Mater., 2009, 164, 527–532.

    Article  CAS  PubMed  Google Scholar 

  44. B. Cagnon, S. Chatelain, T. Ferreira de Oliveira, F. Versaveau, S. Delpeux and O. Chedeville, Water, Air, Soil Pollut., 2017, 228, 1–10.

    Article  CAS  Google Scholar 

  45. S. Ahmed, M. G. Rasul, R. Brown and M. A. Hashib, J. Environ. Manage., 2011, 92, 311–330.

    Article  CAS  PubMed  Google Scholar 

  46. B. L. Yuan, X. Z. Li and N. Graham, Chemosphere, 2008, 72, 197–204.

    Article  CAS  PubMed  Google Scholar 

  47. Y. J. Jung, B. S. Oh, K. S. Kim, M. Koga, R. Shinohara and J. W. Kang, J. Water Health, 2010, 8, 290–298.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Luis Guzmán-Mar.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c8pp00307f

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salazar-Beltrán, D., Hinojosa-Reyes, L., Fernando, MA. et al. Automated on-line monitoring of the TiO2-based photocatalytic degradation of dimethyl phthalate and diethyl phthalate. Photochem Photobiol Sci 18, 863–870 (2019). https://doi.org/10.1039/c8pp00307f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00307f

Navigation