Skip to main content
Log in

Intramolecular electron transfer of light harvesting perylene-pyrene supramolecular conjugate

  • PAPER
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Electronic interactions between the cationic N,N'-bis(2(trimethylammonium iodide) ethylene)perylene-3,4,9,10-tetracarboxyldiimide (TAIPDI) with two electron donors, namely, pyrene (Py) and 1-pyrenesulfo-nic acid sodium salt (PySA), have been investigated. The spectroscopic studies showed the formation of the supramolecular conjugate between TAIPDI and PySA via ionic interaction, but not with Py. Density functional theory (DFT) combined with a natural energy decomposition analysis (NEDA) technique showed an S-like structure of the supramolecular conjugate TAIPDI-PySA via an ionic interaction. The formation constant of the TAIPDI-PySA supramolecular conjugate was determined to be 3.0 x 104 M−1, suggesting a fairly stable complex formation. The excited state events were monitored by both steady state and time-resolved emission techniques. Upon excitation, the quenching pathways via the singlet-excited states of TAIPDI and PySA involved the intramolecular electron transfer from the electron donating PySA to the electron accepting TAIPDI with a rate constant of 1.10 x 1011 s−1 and a quantum yield of 0.99. The thermodynamic parameters of the supramolecular TAIPDI-PySA conjugate have been determined using the stopped-flow technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Gust and T. A. Moore, Mimicking Photosynthesis, Science, 1989, 244, 35–41.

    CAS  PubMed  Google Scholar 

  2. T. J. Meyer, Chemical approaches to artificial photo-synthesis, Acc. Chem. Res., 1989, 22, 163–170.

    Article  CAS  Google Scholar 

  3. M. R. Wasielewski, Photoinduced electron transfer in supramoelcular systems for artificial photosynthesis, Chem. Rev., 1992, 92, 435–461.

    Article  CAS  Google Scholar 

  4. A. Ambroise, R. W. Wagner, P. D. Rao, J. A. Riggs, P. Hascoat, J. R. Diers, J. Seth, R. K. Lammi, D. F. Bocian, D. Holten and J. S. Lindsey, Design and synthesis of por-phyrin-based optoelectronic gates, Chem. Mater., 2001, 13, 1023–1034.

    Article  CAS  Google Scholar 

  5. M. A. Miller, R. K. Lammi, S. Prathapan, D. Holten and J. S. Lindsey, A tightly coupled linear array of perylene, bis (porphyrin), and phthalocyanine units that functions as a photoinduced energy-transfer cascade, J. Org. Chem., 2000, 65, 6634–6649.

    Article  CAS  PubMed  Google Scholar 

  6. K. Kameyama, A. Satake and Y. Kobuke, Light harvesting composites of directly connected-phthalocyanine dyads and their coordinatio dimers, Tetrahedron Lett., 2004, 45, 7617–7620.

    Article  CAS  Google Scholar 

  7. D. M. Guldi, I. Zilbermann, A. Gouloumis, P. Vazquez and T. Torres, Metallophthalocyanines: versatile electron-donat-ing building blocks for fullerene dyads, J. Phys. Chem. B, 2004, 108, 18485–18494.

    Article  CAS  Google Scholar 

  8. J. J. Cid, J.-H. Yum, S.-R. Jang, M. K. Nazeeruddin, E. Martínez-Ferrero, E. Palomares, J. Ko, M. Grätzel and T. Torres, Molecular cosensitization for efficient panchro-matic dye-sensitized solar cells, Angew. Chem., Int. Ed., 2007, 46, 8358–8362.

    Article  CAS  Google Scholar 

  9. Á. J. Jiménez, F. Spänig, M. S. Rodríguez-Morgade, K. Ohkubo, S. Fukuzumi, D. M. Guldi and T. Torres, A tightly coupled bis(zinc(ii) phthalocyanine)-perylenediimide ensemble to yield long-lived radical ion pair states, Org. Lett., 2007, 9, 2481–2484.

    Article  PubMed  CAS  Google Scholar 

  10. W. Lubitz, E. J. Reijerse and J. Messinger, Solar water-split-ting into H2 and O2: design principles of photosystem II and hydrogenases, Energy Environ. Sci., 2008, 1, 15–31.

    Article  CAS  Google Scholar 

  11. V. Balzani, A. Credi and M. Venturi, Photochemical conver-sion of solar energy, ChemSusChem, 2008, 1, 26–58.

    Article  CAS  PubMed  Google Scholar 

  12. C. S. Mullins and V. L. Pecoraro, Reflections on small mole-cule manganese models that seek to mimic photosynthetic water oxidation chemistry, Coord. Chem. Rev., 2008, 252, 416–443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. A. C. Benniston and A. Harriman, Artificial photosynthesis, Mater. Today, 2008, 11, 26–34.

    CAS  Google Scholar 

  14. D. Gust, T. A. Moore and A. L. Moore, Solar fuels via artifi-cial photosynthesis, Acc. Chem. Res., 2009, 42, 1890–1898.

    Article  CAS  PubMed  Google Scholar 

  15. M. E. El-Khouly, J. B. Ryu, K.-Y. Kay, O. Ito and S. Fukuzumi, Long-lived charge separation in a dyad of closely-linked subphthalocyanine-zinc porphyrin bearing multiple triphenylamines, J. Phys. Chem. C, 2009, 113, 15444–15453.

    Article  CAS  Google Scholar 

  16. M. E. El-Khouly, Y. Chen, X. Zhuang and S. Fukuzumi, Long-lived charge-separated configuration of a push-pull archetype of disperse red 1 end-capped poly[9,9-bis(4-diphenylaminophenyl)fluorene], J. Am. Chem. Soc., 2009, 131, 6370–6371.

    Article  CAS  PubMed  Google Scholar 

  17. M. E. El-Khouly, E. El-Mohsnawy and S. Fukuzumi, Solar energy conversion: From natural to artificial photo-synthesis, J. Photochem. Photobiol., C, 2017, 31, 36–83.

    Article  CAS  Google Scholar 

  18. M. E. El-Khouly, S. Fukuzumi and F. D’Souza, Photosynthetic antenna-reaction center mimicry by using boron dipyrromethene sensitizers, ChemPhysChem, 2014, 15, 30–47.

    Article  CAS  PubMed  Google Scholar 

  19. C. B. Kc and F. D’Souza, Coord. Chem. Rev., 2016, 322, 104–141.

    Article  CAS  Google Scholar 

  20. V. Balzani, A. Juris, M. Venturi, S. Campagna and S. Serroni, Luminescent and redox-active polynuclear tran-sition metal complexes, Chem. Rev., 1996, 96, 759–834.

    Article  CAS  PubMed  Google Scholar 

  21. F. D’Souza and O. Ito, Supramolecular donor-acceptor hybrids of porphyrins/phthalocyanines with fullerenes/ carbon nanotubes: electron transfer, sensing, switching, and catalytic applications, Chem. Commun., 2009, 4913–4928.

    Google Scholar 

  22. Artificial Photosynthesis, From Basic Biology to Industrial Application, ed. A. F. Collings, C. Critchley, Wiley-VCH, Weinheim, 2005.

    Google Scholar 

  23. M. O’Neil, M. Niemcyzk, W. Sevc, D. Gosztola, G. Gainez and M. Wasielewski, Picosecond optical switching based on biphotonic excitation of an electron donor-acceptor-donor molecule, Science, 1992, 257, 63–65.

    Article  PubMed  Google Scholar 

  24. S. Prathapan, S. I. Yang, J. Seth, M. A. Miller, D. F. Bocian, D. Holten and J. S. Lindsey, Synthesis and excited-state photodynamics of perylene-porphyrin dyads. 1. Parallel energy and charge transfer via a diphenylethyne linker, J. Phys. Chem. B, 2001, 105, 8237–8248.

    Article  CAS  Google Scholar 

  25. J. M. Serin, D. W. Brousmiche and J. M. Fréchet, Cascade energy transfer in a conformationally mobile multichromo-phoric dendrimer, Chem. Commun., 2002, 2605–2607.

    Google Scholar 

  26. B. A. Jones, M. J. Ahrens, M. H. Yoon, A. Facchetti, T. J. Marks and M. R. Wasielewski, High-Mobility air-stable n-type semiconductors with processing versatility: dicyano-perylene 3,4:9,10-bis(dicarboximides), Angew. Chem., 2004, 116, 6523–6526.

    Article  Google Scholar 

  27. F. Würthner, Perylene bisimide dyes as versatile building blocks for functional supramolecular architectures, Chem. Commun., 2004, 1564–1579.

    Google Scholar 

  28. C.-C. You and F. Würthner, Porphyrin-perylene bisimide dyads and triads: Synthesis and optical and coordination properties, Org. Lett., 2004, 6, 2401–2404.

    Article  CAS  PubMed  Google Scholar 

  29. S. Fukuzumi, K. Ohkubo, J. Ortiz, A. M. Gutiérrez, F. Fernândez-Lâzaro and À. Sastre-Santos, Formation of a long-lived charge-separated state of a zinc phthalocyanine-perylenediimide dyad by complexation with magnesium ion, Chem. Commun., 2005, 3814–3816.

    Google Scholar 

  30. S. Xiao, M. E. El-Khouly, Y. Li, Z. Gan, H. Liu, L. Jiang, Y. Araki, O. Ito and D. Zhu, Dyads and triads containing perylenetetracarboxylic diimide and porphyrin: efficient photoinduced electron transfer via both singlet excited states, J. Phys. Chem. B, 2005, 109, 3658–3667.

    Article  CAS  PubMed  Google Scholar 

  31. B. A. Jones, A. Facchetti, M. R. Wasielewski and T. J. Marks, Tuning orbital energetics in arylene diimide semi-conductors. Materials design for ambient stability of n-type charge transport, J. Am. Chem. Soc., 2007, 129, 15259–15278.

    Article  CAS  PubMed  Google Scholar 

  32. X. Zhan, Z. Tan, B. Domercq, Z. An, X. Zhang, S. Barlow, Y. Li, D. Zhu, B. Kippelen and S. R. Marder, A High-mobi-lity electron-transport polymer with broad absorption and its use in field-effect transistors and all-polymer solar cells, J. Am. Chem. Soc., 2007, 129, 7246–7247.

    Article  CAS  PubMed  Google Scholar 

  33. T. M. Wilson, M. J. Tauber and M. R. Wasielewski, Toward an n-type molecular wire: electron hopping within linearly linked perylenediimide oligomers, J. Am. Chem. Soc., 2009, 131, 8952–8957.

    Article  CAS  PubMed  Google Scholar 

  34. Y. Ito, A. A. Virkar, S. Mannsfeld, J. H. Oh, M. Toney, J. Locklin and Z. Bao, Crystalline ultrasmooth self-assembled monolayers of alkylsilanes for organic field-effect transistors, J. Am. Chem. Soc., 2009, 131, 9396–9404.

    Article  CAS  PubMed  Google Scholar 

  35. F. J. Cespedes-Guirao, A. B. Repero, E. Font-Sanchis, A. Nadal, F. Fernandez-Lazaro and A. Sastre-Santos, A water-soluble perylene dye functionalised with a 17ß-estradiol: a new fluorescent tool for steroidhormones, Chem. Commun., 2011, 47, 8307–8309.

    Article  CAS  Google Scholar 

  36. M. E. El-Khouly, D. H. Choi and S. Fukuzumi, Photoinduced energy-transfer and electron-transfer pro-cesses in molecules of tetrakis((E)-2-(50-hexyl-2,20-bithio-phen-5-yl)vinyl)benzene and perylenediimide, J. Photochem. Photobiol., A, 2011, 218, 17–25.

    Article  CAS  Google Scholar 

  37. M. E. El-Khouly, M. Jaggi, B. Schmid, C. Blum, S.-X. Liu, S. Decurtins, K. Ohkubo and S. Fukuzumi, Annulation of tetrathiafulvalene to the bay region of perylenediimide: fast electron-transfer processes in polar and nonpolar solvents, J. Phys. Chem. C, 2011, 115, 8352–8334.

    Article  CAS  Google Scholar 

  38. M. E. El-Khouly, A. M. Gutiérrez, À. Satre-Santos, F. Fernândez-Lâzaro and S. Fukuzumi, Light harvesting zinc naphthalocyanine-perylenediimide supramolecular dyads: long-lived charge-separated states in nonpolar media, Phys. Chem. Chem. Phys., 2012, 14, 3612–3621.

    Article  CAS  PubMed  Google Scholar 

  39. B. J. Kim, H. Yu, J. H. Oh, M. S. Kang and J. H. Cho, Electrical transport through single nanowires of dialkyl perylene diimide, J. Phys. Chem. C, 2013, 117, 10743–10749.

    Article  CAS  Google Scholar 

  40. E. Kozma and M. Catellani, Perylene diimides based materials for organic solar cells, Dyes Pigm., 2013, 98, 160–179.

    Article  CAS  Google Scholar 

  41. Y. Zhao, Y. Guo and Y. Liu, 25th Anniversary article: recent advances in n-type and ambipolar organic field-effect tran-sistors, Adv. Mater., 2013, 25, 5372–5391.

    Article  CAS  PubMed  Google Scholar 

  42. B. J. Kim, H. Yu, J. H. Oh, M. S. Kang and J. H. Cho, Electrical transport through single nanowires of dialkyl perylene diimide, J. Phys. Chem. C, 2013, 117, 10743–10749.

    Article  CAS  Google Scholar 

  43. W. Yao and Y. S. Zhao, Tailoring the self-assembled struc-tures and photonic properties of organic nanomaterials, Nanoscale, 2014, 6, 3467–3473.

    Article  CAS  PubMed  Google Scholar 

  44. A. El-Refaey, S. Y. Shaban, M. El-Kemary and M. E. El-Khouly, Spectroscopic and thermodynamic studies of light harvesting perylenediimide derivative-zinc porphyrin complex in aqueous media, Spectrochim. Acta, Part A, 2017, 186, 132–139.

    Article  CAS  Google Scholar 

  45. A. El-Refaey, S. Y. Shaban, M. El-Kemary and M. E. El-Khouly, A light harvesting perylene derivative-zinc phthalocyanine complex in water: spectroscopic and thermodynamic studies, Photochem. Photobiol. Sci., 2017, 16, 861–869.

    Article  CAS  PubMed  Google Scholar 

  46. M. E. El-Khouly, A. El-Refaey, S. Y. Shaban and M. El-Kemary, Optical properties and structural morphology of one-dimensional perylenediimide derivatives, J. Lumin., 2018, 196, 445–461.

    Article  CAS  Google Scholar 

  47. Y. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson and S. R. Forrest, Management of singlet and triplet exci-tons for efficient white organic light-emitting devices, Nature, 2006, 440, 908–912.

    Article  CAS  PubMed  Google Scholar 

  48. J. M. Hancock, A. P. Gifford, Y. Zhu, Y. Lou and S. A. Jenekhe, n-Type conjugated oligoquinoline and oligo-quinoxaline with triphenylamine endgroups: efficient ambipolar light emitters for device applications, Chem. Mater., 2006, 18, 4924–4932.

    Article  CAS  Google Scholar 

  49. C. J. Tonzola, A. P. Kulkarni, A. P. Gifford, W. Kaminsky and S. A. Jenekhe, Blue-light-emitting oligoquinolines: Synthesis, properties, and high-efficiency blue-light-emit-ting diodes, Adv. Funct. Mater., 2007, 17, 863–874.

    Article  CAS  Google Scholar 

  50. L. Duan, L. Hou, T. W. Lee, J. Qiao, D. Zhang, G. Dong, L. Wang and Y. Qiu, Solution processable small molecules for organic light-emitting diodes, J. Mater. Chem., 2010, 20, 6392–6407.

    Article  CAS  Google Scholar 

  51. D. Kumar and K. R. J. Thomas, Optical properties of pyrene and anthracene containing imidazoles: Experimental and theoretical investigations, J. Photochem. Photobiol., A, 2011, 218, 162–173.

    Article  CAS  Google Scholar 

  52. Y. Huang, B. Quan, Z. Wei, G. Liu and L. Sun, Self-assembled organic functional nanotubes and nanorods and their sensory properties, J. Phys. Chem. C, 2009, 113, 3929–3933.

    Article  CAS  Google Scholar 

  53. B. Wang and C. Yu, Fluorescence turn-On detection of a protein through the reduced aggregation of a perylene probe, Angew. Chem., Int. Ed., 2010, 49, 1485–1488.

    Article  CAS  Google Scholar 

  54. F. Biedermann, E. Elmalem, I. Ghosh, W. M. Nau and O. A. Scherman, Strongly fluorescent, switchable perylene bis(diimide) host-guest complexes with cucurbit[8]uril in water, Angew. Chem., Int. Ed., 2012, 51, 7739–7743.

    Article  CAS  Google Scholar 

  55. M. J. Frisch, {etet al.}, Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, 2009.

    Google Scholar 

  56. E. D. Glendening and A. Streitwieser, J. Chem. Phys., 1994, 100, 2900–2909.

    Article  CAS  Google Scholar 

  57. E. D. Glendening, Natural energy decomposition analysis: Explicit evaluation of electrostatic and polariz-ation effects with application to aqueous clusters of alkali metal cations and neutrals, J. Am. Chem. Soc., 1996, 118, 2473–2482.

    Article  CAS  Google Scholar 

  58. J. Mizuguchi and K. Tojo, Electronic structure of perylene pigments as viewed from the crystal structure and excitonic interactions, J. Phys. Chem. B, 2002, 106, 767–772.

    Article  CAS  Google Scholar 

  59. G. Scatchard, The attractions of proteins for small mole-cules and ions, Ann. N. Y. Acad. Sci., 1949, 51, 660–672.

    Article  CAS  Google Scholar 

  60. F. D’Souza, G. R. Devipsarad, M. E. Zandler, V. T. Hoang, A. Klykov, M. VanStipdonk, A. Perera, M. E. El-Khouly, M. Fujitsuka and O. Ito, Spectroscopic, electrochemical, and photochemical studies of self-Assembled via axial coordination zinc porphyrin-fulleropyrrolidine dyads, J. Phys. Chem. A, 2002, 106, 3243–3252.

    Article  CAS  Google Scholar 

  61. F. D’Souza, M. E. El-Khouly, S. Gadde, A. L. Carty, P. A. Karr, M. E. Zandler, Y. Araki and O. Ito, Self-assembled via axial coordination magnesium porphyrin-imidazole appended fullerene dyad: Spectroscopic, electrochemical, compu-tational, and photochemical studies, J. Phys. Chem. A, 2005, 109, 10107–10114.

    Article  CAS  Google Scholar 

  62. J. J. da Silva and R. J. P. Williams, The Biological Chemistry of the Elements, 1991.

    Google Scholar 

  63. H. Sigel, Perspectives in Coordination Chemistry, Verlag Helvetica Chimica Acta, Basel, 1992.

    Google Scholar 

  64. S. Y. Shaban, A. M. Ramadan, M. M. Ibrahim, M. A. Mohamed and R. van Eldik, Spectroscopic, thermo-dynamic, kinetic studies and oxidase/antioxidant bio-mimetic catalytic activities of tris(3,5-dimethylpyrazolyl) borate Cu(ii) complexes, Dalton Trans., 2015, 44, 14110–14121.

    Article  CAS  PubMed  Google Scholar 

  65. S. Y. Shaban and R. van Eldik, Reversible release of nitric oxide from an iron(ii) nitrosyl complex containing a bio-mimetic S4N chelate. A facile release of nitric oxide, J. Coord. Chem., 2017, 70, 1713–1722.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed E. El-Khouly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Khouly, M.E., El-Refaey, A., Shaban, S.Y. et al. Intramolecular electron transfer of light harvesting perylene-pyrene supramolecular conjugate. Photochem Photobiol Sci 17, 1098–1107 (2018). https://doi.org/10.1039/c8pp00134k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00134k

Navigation