Skip to main content

Advertisement

Log in

Photobiomodulation prevents DNA fragmentation of alveolar epithelial cells and alters the mRNA levels of caspase 3 and Bcl-2 genes in acute lung injury

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Acute respiratory distress syndrome (ARDS) and acute lung injury (ALI) are defined as pulmonary inflammation that could occur from sepsis and lead to pulmonary permeability and alveolar edema making them life-threatening diseases. Photobiomodulation (PBM) properties have been widely described in the literature in several inflammatory diseases; although the mechanisms of action are not always clear, this could be a possible treatment for ARDS/ALI. Thus, the aim of this study was to evaluate the mRNA levels from caspase-3 and BCL-2 genes and DNA fragmentation in lung tissue from Wistar rats affected by ALI and subjected to photobiomodulation by exposure to a low power infrared laser (808 nm; 100 mW; 3.571 W cm−2; four points per lung). Adult male Wistar rats were randomized into 6 groups (n = 5, for each group): control, PBM10 (10 J cm−2, 2 J and 2 seconds), PBM20 (20 J cm−2, 5 J and 5 seconds), ALI, ALI + PBM10 and ALI + PBM20. ALI was induced by intraperitoneal Escherichia coli lipopolysaccharide injection. Lung samples were collected and divided for mRNA expression of caspase-3 and Bcl-2 and DNA fragmentation quantifications. Data show that caspase-3 mRNA levels are reduced and Bcl-2 mRNA levels increased in ALI after low power infrared laser exposure when compared to the non-exposed ALI group. DNA fragmentation increased in inflammatory infiltrate cells and reduced in alveolar cells. Our research shows that photobiomodulation can alter relative mRNA levels in genes involved in the apoptotic process and DNA fragmentation in inflammatory and alveolar cells after lipopolysaccharide-induced acute lung injury. Also, inflammatory cell apoptosis is part of the photobiomodulation effects induced by exposure to a low power infrared laser.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. G. Ashbaugh, D. B. Bigelow, T. L. Petty and B. E. Levine, Acute respiratory distress in adults, Lancet, 1967, 2, 319–323.

    Article  CAS  PubMed  Google Scholar 

  2. ARDS Definition Task Force, V. M. Ranieri, G. D. Rubenfeld, B. T. Thompson, N. D. Ferguson, E. Caldwell, E. Fan, L. Camporota and A. S. Slutsky, Acute respiratory distress syndrome: the Berlin Definition, J. Am. Med. Assoc., 2012, 307, 2526–2533.

    Google Scholar 

  3. S. E. Jolley, C. L. Hough, G. Clermont, D. Hayden, S. Hou, D. Schoenfeld, N. L. Smith, B. T. Thompson, G. R. Bernard and D. C. Angus, ARDS Network Investigators, Relationship between race and the effect of fluids on long-term mortality after acute respiratory distress syndrome. Secondary analysis of the national heart, lung, and blood institute fluid and catheter treatment trial, Ann. Am. Thorac. Soc., 2017, 14, 1443–1449.

    Article  PubMed  PubMed Central  Google Scholar 

  4. S. Han and R. Mallampalli, The acute respiratory distress syndrome: From mechanism to translation, J. Immunol., 2015, 194, 855–860.

    Article  CAS  PubMed  Google Scholar 

  5. E. Crimi and A. S. Slutsky, Inflammation and the acute respiratory distress syndrome, Best Pract. Res., Clin. Anaesthesiol., 2004, 18, 477–492.

    Article  CAS  Google Scholar 

  6. B. Geering and H. U. Simon, Peculiarities of cell death mechanisms in neutrophils, Cell Death Differ., 2011, 18, 1457–1469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. B. Dibbert, M. Weber, W. H. Nikolaizik, P. Vogt, M. H. Schoni, K. Blaser and H. U. Simon, Cytokine-mediated Bax deficiency and consequent delayed neutrophil apoptosis: a general mechanism to accumulate effector cells in inflammation, Proc. Natl. Acad. Sci. U. S. A., 1999, 96, 13330–13335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. M. E. Peter, Programmed cell death: apoptosis meets necrosis, Nature, 2011, 471, 310–312.

    Article  CAS  PubMed  Google Scholar 

  9. S. Elmore, Apoptosis: a review of programmed cell death, Toxicol. Pathol., 2007, 35, 495–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. J. C. Martinou and R. J. Youle, Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics, Dev. Cell, 2011, 21, 92–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. A. Shamas-Din, J. Kale, B. Leber and D. W. Andrews, Mechanisms of Action of Bcl-2 Family Proteins, Cold Spring Harbor Perspect. Biol., 2013, 5, a008714.

    Article  CAS  Google Scholar 

  12. L. M. J. Dos Anjos, A. S. da Fonseca, J. Gameiro and F. de Paoli, Apoptosis induced by low power laser in polymorphonuclear cells of acute joint inflammation: comparative analysis of two energy densities, Lasers Med. Sci., 2017, 32, 975–983.

    Article  PubMed  Google Scholar 

  13. M. H. Niemz, Laser-tissue interactions: Fundamentals and applications, Springer-Verlag, New York, 2007.

    Book  Google Scholar 

  14. T. I. Karu, Low-power laser therapy, in Biomedical photonics handbook, ed. T. Vo Dinh, CRC Press, Boca Raton, 2003.

    Google Scholar 

  15. A. Bartos, Y. Grondin, M. E. Bortoni, E. Ghelfi, R. Sepulveda, J. Carroll and R. A. Rogers, Pre-conditioning with near infrared photobiomodulation reduces inflammatory cytokines and markers of oxidative stress in cochlear hair cells, J. Biophotonics, 2016, 9, 1125–1135.

    Article  CAS  PubMed  Google Scholar 

  16. C. Y. Fukuoka, A. Simões, T. Uchiyama, V. E. Arana-Chavez, Y. Abiko, N. Kuboyama and U. K. Bhawal, The Effects of Low-Power Laser Irradiation on Inflammation and Apoptosis in Submandibular Glands of Diabetes-Induced Rats, PLoS One, 2017, 12, e0169443.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. M. Gulsoy, G. H. Ozer, O. Bozkulak, H. O. Tabakoglu, E. Aktas, G. Deniz and C. Ertan, The biological effects of 632.8 nm low energy HeNe laser on peripheral blood mononuclear cells in vitro, J. Photochem. Photobiol., B, 2006, 82, 199–202.

    Article  CAS  Google Scholar 

  18. N. A. Pereira, C. P. Eduardo, E. Matson and M. M. Marques, Effect of low-power laser irradiation on cell growth and procollagen synthesis of cultured fibroblasts, Lasers Surg. Med., 2002, 31, 263–267.

    Article  PubMed  Google Scholar 

  19. A. Dube, H. Bansal and P. K. Gupta, Modulation of macrophage structure and function by low level He-Ne laser irradiation, Photochem. Photobiol. Sci., 2003, 2, 851–855.

    Article  CAS  PubMed  Google Scholar 

  20. J. V. Kruchenok, S. B. Bushuk, G. I. Kurilo, N. A. Nemkovich and A. N. Rubinov, Orientation of red blood cells and roleaux disaggregation in interference laser fields, J. Biol. Phys., 2005, 31, 73–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. A. K. Schroder, M. von der Ohe, U. Kolling, J. Alstaedt, P. Uciechowski, D. Fleischer, K. Dalhoff, X. Ju, M. Zenke, N. Heussen and L. Rink, Polymorphonuclear leucocytes selectively produce anti-inflammatory interleukin-1 receptor antagonist and chemokines, but fail to produce pro-inflammatory mediators, Immunology, 2006, 119, 317–327.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. S. M. Safavi, B. Kazemi, M. Esmaeili, A. Fallah, A. Modarresi and M. Mir, Effects of low level He-Ne laser irradiation on the gene expression of IL-1β, TNF-α, IFN-γ, TGF-β, bFGF and PDGF in rat's gingiva, Lasers Med. Sci., 2008, 23, 331–335.

    Article  PubMed  Google Scholar 

  23. N. A. Zhevago and K. A. Samoilova, Pro- and anti-inflammatory cytokine content in human peripheral blood alter its transcutaneous (in vivo) and direct (in vitro) irradiation with polychromatic visible and infrared light, Photomed. Laser Surg., 2006, 24, 129–139.

    Article  CAS  PubMed  Google Scholar 

  24. D. L. Brown, Practical Stereology Applications for the Pathologist, Vet. Pathol., 2017, 54, 358–368.

    Article  PubMed  Google Scholar 

  25. K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)), Method, Methods, 2001, 25, 402–408.

    Article  CAS  PubMed  Google Scholar 

  26. W. Lim, S. Lee, I. Kim, M. Chung, M. Kim, H. Lim, J. Park, O. Kim and H. Choi, The anti-inflammatory mechanism of 635 nm lightemitting-diode irradiation compared with existing COX inhibitors, Lasers Surg. Med., 2007, 39, 614–621.

    Article  PubMed  Google Scholar 

  27. P. R. Arany, Craniofacial wound healing with photobiomodulation therapy: new insights and current challenges, J. Dent. Res., 2016, 95, 977–984.

    Article  CAS  PubMed  Google Scholar 

  28. P. Rola, A. Doroszko and A. Derkacz, The Use of Low-Level Energy Laser Radiation in Basic and Clinical Research, Adv. Clin. Exp. Med., 2014, 23, 835–842.

    Article  PubMed  Google Scholar 

  29. F. B. Fiorio, S. A. dos Santos, C. S. de Melo Rambo, C. G. Dalbosco, A. J. Serra, B. L. de Melo, E. C. P. Leal-Junior and P. T. C. de Carvalho, Photobiomodulation therapy action in wound repair skin induced in aged rats old: time course of biomarkers inflammatory and repair, Lasers Med. Sci., 2017, 8, 1769–1782.

    Article  Google Scholar 

  30. A. R. de Oliveira, A. A. Vanin, S. S. Tomazoni, E. F. Miranda, G. M. Albuquerque-Pontes, T. de Marchi, V. dos Santos Grandinetti, P. R. V. de Paiva, T. B. G. Imperatori, P. T. C. de Carvalho, J. M. Bjordal and E. C. P. Leal-Junior, Pre-Exercise Infrared Photobiomodulation Therapy (810 nm) in Skeletal Muscle Performance and Postexercise Recovery in Humans: What Is the Optimal Power Output?, Photomed. Laser Surg., 2017, 11, 595–603.

    Article  CAS  Google Scholar 

  31. Y. Shen, C. Xie, Y. Gu, X. Li and J. Tong, Illumination from light-emitting diodes (LEDs) disrupts pathological cytokines expression and activates relevant signal pathways in primary human retinal pigment epithelial cells, Exp. Eye Res., 2016, 145, 456–467.

    Article  CAS  PubMed  Google Scholar 

  32. Y. Oshima, R. D. Coutts, N. M. Badlani, R. M. Healey, T. Kubo and D. Amiel, Effect of light-emitting diode (LED) therapy on the development of osteoarthritis (OA) in a rabbit model, Biomed. Pharmacother., 2011, 3, 224–229.

    Article  CAS  Google Scholar 

  33. Y. Oshima, R. D. Coutts, N. M. Badlani, R. M. Healey, T. Kubo and D. Amiel, Effect of light-emitting diode (LED) therapy on the development of osteoarthritis (OA) in a rabbit model, Biomed. Pharmacother., 2011, 3, 224–229.

    Article  CAS  Google Scholar 

  34. K. R. Byrnes, R. W. Waynant, I. K. Ilev, X. Wu, L. Barna, K. Smith, R. Heckert, H. Gerst and J. J. Anders, Light promotes regeneration and functional recovery and alters the immune response after spinal cord injury, Lasers Surg. Med., 2005, 3, 171–185.

    Article  Google Scholar 

  35. T. A. Henderson and L. D. Morries, Near-infrared photonic energy penetration: can infrared phototherapy effectively reach the human brain?, Neuropsychiatr. Dis. Treat., 2015, 11, 2191–2208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. D. E. Hudson, D. O. Hudson, J. M. Wininger and B. D. Richardson, Penetration of laser light at 808 and 980 nm in bovine tissue samples, Photomed. Laser Surg., 2013, 4, 163–168.

    Article  Google Scholar 

  37. F. Bortone, H. A. Santos, R. Albertini, J. B. Pesquero, M. S. Costa and J. J. Silva, Low level laser therapy modulates kinin receptors mRNA expression in the subplantar muscle of rat paw subjected to carrageenan-induced inflammation, Int. Immunopharmacol., 2008, 8, 206–210.

    Article  CAS  PubMed  Google Scholar 

  38. O. Lesur, A. Kokis, C. Hermans, T. Fulop, A. Bernard and D. Lane, Interleukin-2 involvement in early acute respiratory distress syndrome: relationship with polymorphonuclear neutrophil apoptosis and patient survival, Crit. Care Med., 2000, 28, 3814–3822.

    Article  CAS  PubMed  Google Scholar 

  39. V. Galani, E. Tatsaki, M. Bai, P. Kitsoulis, M. Lekka, G. Nako and P. Kanavaros, The role of apoptosis in the pathophysiology of Acute Respiratory Distress Syndrome (ARDS): an up-to-date cell-specific review, Pathol., Res. Pract., 2010, 206, 145–150.

    Article  CAS  Google Scholar 

  40. R. H. Bardales, S. S. Xie, R. F. Schaefer and S. M. Hsu, Apoptosis is a major pathway responsible for the resolution of type II pneumocytes in acute lung injury, Am. J. Pathol., 1996, 149, 845–852.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. T. R. Martin, N. Hagimoto, M. Nakamura and G. Matute-Bello, Apoptosis and Epithelial Injury in the Lungs, Proc. Am. Thorac. Soc., 2005, 2, 214–220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. K. H. Kim, M. J. Kwun, C. W. Han, K. T. Kan, J. Y. Choi and M. Joon, Suppression of lung inflammation in an LPS-induced acute lung injury model by the fruit hull of Gleditsia sinensis, BMC Complementary Altern. Med., 2014, 14, 402–409.

    Article  Google Scholar 

  43. C. M. Gross, M. Kellner, T. Wang, Q. Lu, X. Sun, E. A. Zemskov, S. Noonepalle, A. Kangath, S. Kumar, M. Gonzalez-Garay, A. A. Desai, S. Aggarwal, B. Gorshkov, C. Klinger, A. D. Verin, J. D. Catravas, J. R. Jacobson, J. X. Yuan, R. Rafikov, J. G. N. Garcia and S. M. Black, LPS Induced Acute Lung Injury Involves the NF-κB-mediated Downregulation of SOX18, Am. J. Respir. Cell Mol. Biol., 2017, 5, 614–624.

    Google Scholar 

  44. B. Zhu, G. H. Luo, Y. H. Feng, M. M. Yu, J. Zhang, J. Wei, C. Yang, N. Xu and X. Y. Zhang, Apolipoprotein M Protects Against Lipopolysaccharide-Induced Acute Lung Injury via Sphingosine-1-Phosphate Signaling, Inflammation, 2018, 2, 643–653.

    Article  CAS  Google Scholar 

  45. N. Liu, X. Ma, X. Luo, Y. Zhang, Y. He, Z. Dai, Y. Yang, G. Wu and Z. Wu, l-Glutamine Attenuates Apoptosis in Porcine Enterocytes by Regulating Glutathione-Related Redox Homeostasis, J. Nutr., 2018, 4, 526–534.

    Article  Google Scholar 

  46. R. D. Barber, D. W. Harmer, R. A. Coleman and B. J. Clark, GAPDH as a housekeeping gene: analysis of GAPDH mRNA expression in a panel of 72 human tissues, Physiol. Genomics, 2005, 21, 398–395.

    Article  CAS  Google Scholar 

  47. Z. Darzynkiewicz, D. Galkowski and H. Zhao, Analysis of apoptosis by cytometry using TUNEL assay, Methods, 2008, 3, 250–254.

    Article  CAS  Google Scholar 

  48. D. T. Loo, In situ detection of apoptosis by the TUNEL assay: an overview of techniques, Methods Mol. Biol., 2011, 682, 3–13.

    Article  CAS  PubMed  Google Scholar 

  49. Y. Y. Huang, A. C. H. Chen, J. D. Carroll and M. R. Hamblin, Biphasic dose response in low level light therapy, Dose-Response, 2009, 7, 358–383.

    Article  PubMed  PubMed Central  Google Scholar 

  50. T. I. Karu, Multiple roles of cytochrome c oxidase in mammalian cells under action of red and IR-A radiation, IUBMB Life, 2010, 62, 607–610.

    Article  CAS  PubMed  Google Scholar 

  51. T. I. Karu, Mitochondrial signaling in mammalian cells activated by red and near-IR radiation, Photochem. Photobiol., 2008, 84, 1091–1099.

    Article  CAS  PubMed  Google Scholar 

  52. P. C. Silveira, K. B. Ferreira, F. R. da Rocha, B. L. Pieri, G. S. Pedroso, C. T. De Souza, R. T. Nesi and R. A. Pinho, Effect of Low-power laser (LPL) and light-emitting diode (LED) on inflammatory response in burn wound healing, Inflammation, 2016, 39, 1395–1404.

    Article  CAS  PubMed  Google Scholar 

  53. Y. H. Chu, S. Y. Chen, Y. L. Hsieh, Y. H. Teng and Y. J. Cheng, Low-level laser therapy prevents endothelial cells from TNF-α/cycloheximide-induced apoptosis, Lasers Med. Sci., 2018, 33, 279–286.

    Article  PubMed  Google Scholar 

  54. A. Tamura, T. Matsunobu, R. Tamura, S. Kawauchi, S. Sato and A. Shiotani, Photobiomodulation rescues the cochlea from noise-induced hearing loss via upregulating nuclear factor κB expression in rats, Brain Res., 2016, 1646, 467–474.

    Article  CAS  PubMed  Google Scholar 

  55. Y. Shingyochi, S. Kanazawa, S. Tajima, R. Tanaka, H. Mizuno and M. Tobita, A Low-Level Carbon Dioxide Laser Promotes Fibroblast Proliferation and Migration through Activation of Akt, ERK, and JNK, PLoS One, 2017, 12, e0168937.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. A. S. Fonseca, T. O. Moreira, D. L. Paixão, F. M. Farias, O. R. Guimarães, S. Paoli, M. Geller and F. Paoli, Effect of laser therapy on DNA damage, Lasers Surg. Med., 2010, 42, 481–488.

    Article  PubMed  Google Scholar 

  57. E. Schulz, P. Wenzel, T. Münzel and A. Daiber, Mitochondrial redox signaling: interaction of mitochondrial reactive oxygen species with other sources of oxidative stress, Antioxid. Redox Signaling, 2014, 20, 308–324.

    Article  CAS  Google Scholar 

  58. V. M. Heatwole, TUNEL assay for apoptotic cells, Methods Mol Biol., 1999, 115, 141–148.

    CAS  PubMed  Google Scholar 

  59. K. Kyrylkova, S. Kyryachenko, M. Leid and C. Kioussi, Detection of apoptosis by TUNEL assay, Methods Mol. Biol., 2012, 887, 41–47.

    Article  CAS  PubMed  Google Scholar 

  60. S. Lopes, A. Jurisicova, J. G. Sun and R. F. Casper, Reactive oxygen species: potential cause for DNA fragmentation in human spermatozoa, Hum. Reprod., 1998, 13, 896–900.

    Article  CAS  PubMed  Google Scholar 

  61. P. Formichi, E. Radi, C. Battisti, E. Tarquini, A. Leonini, A. Di Stefano and A. Federico, Human fibroblasts undergo oxidative stress-induced apoptosis without internucleosomal DNA fragmentation, J. Cell Physiol., 2006, 208, 289–297.

    Article  CAS  PubMed  Google Scholar 

  62. F. Aimbire, F. V. Santos, R. Albertini, H. C. Castro-Faria-Neto, J. Mittmann and C. Pacheco-Soares, Low-level laser therapy decreases levels of lung neutrophils anti-apoptotic factors by a NF-kappaB dependent mechanism, Int. Immunopharmacol., 2008, 8, 603–605.

    Article  CAS  PubMed  Google Scholar 

  63. D. El Kebir and J. G. Filep, Role of neutrophil apoptosis in the resolution of inflammation, Sci. World J., 2010, 10, 1731–1748.

    Article  CAS  Google Scholar 

  64. C. Miranda da Silva, M. Peres Leal, R. A. Brochetti, T. Braga, L. B. Vitoretti, N. O. Saraiva Câmara, A. S. Damazo, A. P. Ligeiro-deOliveira, M. C. Chavantes and A. Lino-Dos-Santos-Franco, Low level laser therapy reduces the development of lung inflammation induced by formaldehyde exposure, PLoS One, 2015, 10, e0142816.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação Carlos Chagas de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Philippe da Silva Sergio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva Sergio, L.P., Côrtes Thomé, A.M., da Silva Neto Trajano, L.A. et al. Photobiomodulation prevents DNA fragmentation of alveolar epithelial cells and alters the mRNA levels of caspase 3 and Bcl-2 genes in acute lung injury. Photochem Photobiol Sci 17, 975–983 (2018). https://doi.org/10.1039/c8pp00109j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00109j

Navigation