Skip to main content
Log in

The good, the bad, and the ugly–controlling singlet oxygen through design of photosensitizers and delivery systems for photodynamic therapy

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Singlet oxygen, although integral to photodynamic therapy, is notoriously uncontrollable, suffers from poor selectivity and has fast decomposition rates in biological media. Across the scientific community, there is a conscious effort to refine singlet oxygen interactions and initiate selective and controlled release to produce a consistent and reproducible therapeutic effect in target tissue. This perspective aims to provide an insight into the contemporary design principles behind photosensitizers and drug delivery systems that depend on a singlet oxygen response or controlled release. The discussion will be accompanied by in vitro and in vivo examples, in an attempt to highlight advancements in the field and future prospects for the more widespread application of photodynamic therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Il buono, il brutto, il cattivo, 1966 [film]. Directed by Sergio Leone. Italy: Produzioni Europee Associati (PEA).

  2. N. R. Finsen, La Photothérapie, Georges Carré et C. Naud, Paris, 1899.

    Google Scholar 

  3. H. von Tappeiner and A. Jodlbauer, Die sensibilisierende Wirkung fluorescierender Substanzen; gesammelte Untersuchungen über die photodynamische Erscheinung, Vogel, Leipzig, 1907.

    Google Scholar 

  4. A. Jesionek, Lichtbiologie. Die experimentellen Grundlagen der modernen Lichtbehandlung, Vieweg, Braunschweig, 1910.

    Google Scholar 

  5. O. Raab, Über die Wirkung fluoreszierender Stoffe auf Infusorien, Z. Biol., 1900, 39, 524–546

    CAS  Google Scholar 

  6. H. von Tappeiner, Über die Wirkung fluoreszierender Stoffe auf Infusorien nach Versuchen von O. Raab, Münch. Med. Wochenschr., 1900, 47, 5–7.

    Google Scholar 

  7. F. Meyer-Betz, Untersuchungen üeber die biologische (photodynamische) Wirkung des Haematoporphyrins und andere Derivate des Blut-und Gallenfarbstoffs, Dtsch. Arch. Klin. Med., 1913, 112, 476–503.

    Google Scholar 

  8. T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan and Q. Peng, Photodynamic therapy, J. Natl. Cancer Inst., 1998, 90, 889–905.

    Article  CAS  PubMed  Google Scholar 

  9. S. B. Brown, E. A. Brown and I. Walker, The present and future role of photodynamic therapy in cancer treatment, Lancet Oncol., 2004, 5, 497–508.

    Article  CAS  PubMed  Google Scholar 

  10. X. Wen, Y. Li and M. R. Hamblin, Photodynamic therapy for localized infections-state of the art, Photodiagn. Photodyn. Ther., 2017, 19, 140–152.

    Article  CAS  Google Scholar 

  11. U. Schmidt-Erfurth and T. Hasan, Mechanisms of action of photodynamic therapy with verteporfin for the treat-ment of age-related macular degeneration, Surv. Ophthalmol., 2000, 45, 195–214.

    Article  CAS  PubMed  Google Scholar 

  12. M. R. Hamblin and T. Hasan, Photodynamic therapy: a new antimicrobial approach to infectious disease?, Photochem. Photobiol. Sci., 2004, 3, 436–450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. B. W. Henderson and T. J. Dougherty, How does photo-dynamic therapy work?, Photochem. Photobiol., 1992, 55, 145–157

    Article  CAS  PubMed  Google Scholar 

  14. R. Bonnett, Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy, Chem. Soc. Rev., 1995, 24, 19–33

    Article  CAS  Google Scholar 

  15. J. Moan and Q. Peng, An outline of the hundred-year history of PDT, Anticancer Res., 2003, 23, 3591–3600.

    PubMed  Google Scholar 

  16. A. P. Castano, T. N. Demidova and M. R. Hamblin, Mechanisms in photodynamic therapy: part one-photo-sensitizers, photochemistry and cellular localization, Photodiagn. Photodyn. Ther., 2004, 1, 279–293

    Article  CAS  Google Scholar 

  17. A. P. Castano, T. N. Demidova and M. R. Hamblin, Mechanisms in photodynamic therapy: part two-cellular signaling, cell metabolism and modes of cell death, Photodiagn. Photodyn. Ther., 2005, 2, 1–23.

    Article  CAS  Google Scholar 

  18. B. Q. Spring, I. Rizvi, N. Xu and T. Hasan, The role of photodynamic therapy in overcoming cancer drug resis-tance, Photochem. Photobiol. Sci., 2015, 14, 1476–1491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. M. O. Senge and M. W. Radomski, Platelets, photosen-sitizers, and PDT, Photodiagn. Photodyn. Ther., 2013, 10, 1–16.

    Article  CAS  Google Scholar 

  20. M. O. Senge, mTHPC-A drug on its way from second to third generation photosensitizer?, Photodiagn. Photodyn. Ther., 2012, 9, 170–179

    Article  CAS  Google Scholar 

  21. M. O. Senge and J. C. Brandt, Temoporfin (Foscan©, 5,10,15,20-Tetra(m-hydroxyphenyl)chlorin) - a second generation photosensi-tizer, Photochem. Photobiol., 2011, 87, 1240–1296

    Article  CAS  PubMed  Google Scholar 

  22. H. Abrahamse and M. R. Hamblin, New photosensiti-zers for photodynamic therapy, Biochem. J., 2016, 473, 347–364.

    Article  CAS  PubMed  Google Scholar 

  23. Y. N. Konan, R. Gurny and E. Allemann, State of the art in the delivery of photosensitizers for photodynamic therapy, J. Photochem. Photobiol., B, 2002, 66, 89–106

    Article  CAS  Google Scholar 

  24. E. Paszko, C. Ehrhardt, M. O. Senge, D. P. Kelleher and J. V. Reynolds, Nanodrug applications in photodynamic therapy, Photodiagn. Photodyn. Ther., 2011, 8, 14–29

    Article  CAS  Google Scholar 

  25. L. B. Josefsen and R. W. Boyle, Unique diagnostic and therapeutic roles of porphyrins and phthalocyanines in photodynamic therapy, imaging and theranostics, Theranostics, 2012, 2, 916–966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. M. Ochsner, Photophysical and photobiological pro-cesses in the photodynamic therapy of tumours, J. Photochem. Photobiol., B, 1997, 39, 1–18

    Article  CAS  Google Scholar 

  27. M. C. DeRosa and R. J. Crutchley, Photosensitized singlet oxygen and its applications, Coord. Chem. Rev., 2002, 233, 351–371.

    Article  Google Scholar 

  28. B. C. Wilson, M. S. Patterson and L. Lilge, Implicit and explicit dosimetry in photodynamic therapy: a new para-digm, Lasers Med. Sci., 1997, 12, 182–199

    Article  CAS  PubMed  Google Scholar 

  29. Z. Huang, H. P. Xu, A. D. Meyers, A. I. Musani, L. W. Wang, R. Tagg, A. B. Barqawi and Y. K. Chen, Photodynamic therapy for treatment of solid tumors-potential and technical chal-lenges, Technol. Cancer Res. Treat., 2008, 7, 309–320

    Article  CAS  PubMed  Google Scholar 

  30. C. A. Morton, K. E. McKenna and L. E. Rhodes, Guidelines for topical photodynamic therapy: update, Br. J. Dermatol., 2008, 159, 1245–1266

    Article  CAS  PubMed  Google Scholar 

  31. R. R. Allison and K. Moghissi, Oncologic photodynamic therapy: Clinical strategies that modulate mechanisms of action, Photodiagn. Photodyn. Ther., 2013, 10, 331–341

    Article  CAS  Google Scholar 

  32. B. C. Wilson and M. S. Patterson, The physics, biophys-ics and technology of photodynamic therapy, Phys. Med. Biol., 2008, 53, R61–R109.

    Article  CAS  PubMed  Google Scholar 

  33. W. M. Sharman, J. E. van Lier and C. M. Allen, Targeted photodynamic therapy via receptor mediated delivery systems, Adv. Drug Delivery Rev., 2004, 56, 53–76

    Article  CAS  Google Scholar 

  34. P. Rai, S. Mallidi, X. Zheng, R. Rahmanzadeh, Y. Mir, S. Elrington, A. Khurshid and T. Hasan, Development and applications of photo-triggered theranostic agents, Adv. Drug Delivery Rev., 2010, 62, 1094–1124

    Article  CAS  Google Scholar 

  35. S. Protti, A. Albini, R. Viswanathan and A. Greer, Targeting photo-chemical scalpels or lancets in the photodynamic therapy field the photochemist’s role, Photochem. Photobiol., 2017, 93, 1139–1153.

    Article  CAS  PubMed  Google Scholar 

  36. J. Moan and K. Berg, The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen, Photochem. Photobiol., 1991, 53, 549–553.

    Article  CAS  PubMed  Google Scholar 

  37. E. Skovsen, J. D. C. Lambert and P. R. Ogilby, Lifetime and diffusion of singlet oxygen in a cell, J. Phys. Chem. B, 2005, 109, 8570–8573.

    Article  CAS  PubMed  Google Scholar 

  38. P. R. Ogilby, Singlet oxygen: there is indeed something new under the sun, Chem. Soc. Rev., 2010, 39, 3181–3209.

    Article  CAS  PubMed  Google Scholar 

  39. J. F. Lovell, T. W. B. Liu, J. Chen and G. Zheng, Activatable photosensitizers for imaging and therapy, Chem. Rev., 2010, 110, 2839–2857

    Article  CAS  PubMed  Google Scholar 

  40. X. Li, S. Kolemen, J. Yoon and E. U. Akkaya, Activatable photosensitizers: agents for selective photodynamic therapy, Adv. Funct. Mater., 2017, 27, 1604053.

    Article  CAS  Google Scholar 

  41. C. Schweitzer and R. Schmidt, Physical mechanisms of generation and deactivation of singlet oxygen, Chem. Rev., 2003, 103, 1685–1757.

    Article  CAS  PubMed  Google Scholar 

  42. T. Förster, Zwischenmolekulare Energiewanderung und Fluoreszenz, Ann. Phys., 1948, 437, 55–75.

    Article  Google Scholar 

  43. J. Z. Zhao, K. J. Xu, W. B. Yang, Z. J. Wang and F. F. Zhong, The triplet excited state of BODIPY: for-mation, modulation and application, Chem. Soc. Rev., 2015, 44, 8904–8939.

    Article  CAS  PubMed  Google Scholar 

  44. R. Pottier, R. Bonneau and J. Joussot-Dubien, pH dependence of singlet oxygen production in aqueous solu-tions using toluidine blue as a photosensitizer, Photochem. Photobiol., 1975, 22, 59–61

    Article  CAS  PubMed  Google Scholar 

  45. R. Bonneau, R. Pottier, O. Bagno and J. Joussot-Dubien, pH Dependence of singlet oxygen production in aqueous solutions using thiazine dyes as photosensitizers, Photochem. Photobiol., 1975, 21, 159–163.

    Article  CAS  PubMed  Google Scholar 

  46. J. Arnbjerg, M. Johnsen, C. B. Nielsen, M. Jorgensen and P. R. Ogilby, Effect of sensitizer protonation on singlet oxygen production in aqueous and nonaqueous media, J. Phys. Chem. A, 2007, 111, 4573–4583.

    Article  CAS  PubMed  Google Scholar 

  47. W. Spiller, H. Kliesch, D. Wöhrle, S. Hackbarth, B. Röder and G. Schnurpfeil, Singlet oxygen quantum yields of different photosensitizers in polar solvents and micellar solutions, J. Porphyrins Phthalocyanines, 1998, 2, 145–158.

    Article  CAS  Google Scholar 

  48. B. Ehrenberg, J. L. Anderson and C. S. Foote, Kinetics and yield of singlet oxygen photosensitized by hypericin in organic and biological media, Photochem. Photobiol., 1998, 68, 135–140.

    Article  CAS  PubMed  Google Scholar 

  49. S. Ben-Dror, I. Bronshtein, A. Wiehe, B. Röder, M. O. Senge and B. Ehrenberg, On the correlation between hydrophobicity, liposome binding and cellular uptake of porphyrin sensitizers, Photochem. Photobiol., 2006, 82, 695–701.

    Article  CAS  PubMed  Google Scholar 

  50. A. Lavi, H. Weitman, R. T. Holmes, K. M. Smith and B. Ehrenberg, The depth of porphyrin in a membrane and the membrane’s physical properties affect the photosensi-tizing efficiency, Biophys. J., 2002, 82, 2101–2110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. I. Bronshtein, S. Aulova, A. Juzeniene, V. Lani, L. W. Na, K. M. Smith, Z. Malik, J. Moan and B. Ehrenberg, In vitro and in vivo photosensitization by protoporphyrins posses-sing different lipophilicities and vertical localization in the membrane, Photochem. Photobiol., 2006, 82, 1319–1325.

    Article  CAS  Google Scholar 

  52. J. L. Wike-Hooley, J. Haveman and H. S. Reinhold, The relevance of tumour pH to the treatment of malignant disease, Radiother. Oncol., 1984, 2, 343–366.

    Article  CAS  PubMed  Google Scholar 

  53. S. McDonnell, M. J. Hall, L. T. Allen, A. Byrne, W. M. Gallagher and D. F. O’Shea, Supramolecular photo-nic therapeutic agents, J. Am. Chem. Soc., 2005, 127, 16360–16361.

    Article  CAS  PubMed  Google Scholar 

  54. W. Fan, W. Bu, B. Shen, Q. He, Z. Cui, Y. Liu, X. Zheng, K. Zhao and J. Shi, Intelligent MnO2 nanosheets anchored with upconversion nanoprobes for concurrent pH-/H2O2- responsive UCL imaging and oxygen-elevated synergetic therapy, Adv. Mater., 2015, 27, 4155–4161.

    Article  CAS  PubMed  Google Scholar 

  55. C. Wang, L. Cheng, Y. M. Liu, X. J. Wang, X. X. Ma, Z. Y. Deng, Y. G. Li and Z. Liu, Imaging-guided pH-sensi-tive photodynamic therapy using charge reversible upcon-version nanoparticles under near-infrared light, Adv. Funct. Mater., 2013, 23, 3077–3086.

    Article  CAS  Google Scholar 

  56. D. Ling, W. Park, S. J. Park, Y. Lu, K. S. Kim, M. J. Hackett, B. H. Kim, H. Yim, Y. S. Jeon, K. Na and T. Hyeon, Multifunctional tumor pH-sensitive self-assembled nano-particles for bimodal imaging and treatment of resistant heterogeneous tumors, J. Am. Chem. Soc., 2014, 136, 5647–5655.

    Article  CAS  PubMed  Google Scholar 

  57. R. C. H. Wong, S. Y. S. Chow, S. Zhao, W.-P. Fong, D. K. P. Ng and P.-C. Lo, pH-responsive dimeric zinc(ii) phthalocyanine in mesoporous silica nanoparticles as an activatable nanophotosensitizing system for photo-dynamic therapy, ACS Appl. Mater. Interfaces, 2017, 9, 23487–23496.

    Article  CAS  PubMed  Google Scholar 

  58. W. Piao, K. Hanaoka, T. Fujisawa, S. Takeuchi, T. Komatsu, T. Ueno, T. Terai, T. Tahara, T. Nagano and Y. Urano, Development of an azo-based photosensitizer activated under mild hypoxia for photodynamic therapy, J. Am. Chem. Soc., 2017, 139, 13713–13719.

    Article  CAS  PubMed  Google Scholar 

  59. F. Q. Schafer and G. Buettner, Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple, Free Radicals Biol. Med., 2001, 30, 1191–1212

    Article  CAS  Google Scholar 

  60. M. P. Gamcsik, M. S. Kasibhatla, S. D. Teeter and O. M. Colvin, Glutathione levels in human tumors, Biomarkers, 2012, 17, 671–691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. I. S. Turan, F. P. Cakmak, D. C. Yildirim, R. Cetin-Atalay and E. U. Akkaya, Near-IR absorbing BODIPY derivatives as glutathione-activated photosensitizers for selective photodynamic action, Chem. - Eur. J., 2014, 20, 16088–16092.

    Article  CAS  PubMed  Google Scholar 

  62. J. Zhao, L. Huang, X. Cui, S. Li and H. Wu, Maximizing the thiol-activated photodynamic and fluorescence imaging functionalities of theranostic reagents by modu-larization of BODIPY-based dyad triplet photosensitizers, J. Mater. Chem. B, 2015, 3, 9194–9211.

    Article  CAS  PubMed  Google Scholar 

  63. L. Zeng, S. Kuang, G. Li, C. Jin, L. Ji and H. Chao, GSH-activatable ruthenium(II)-azo photosensitizer for two-photon photodynamic therapy, Chem. Commun., 2017, 53, 1977–1980.

    Article  CAS  Google Scholar 

  64. F. Hu, Y. Yuan, D. Mao, W. Wu and B. Liu, Smart activata-ble and traceable dual-prodrug for image-guided combi-nation photodynamic and chemo-therapy, Biomaterials, 2017, 144, 53–59.

    Article  CAS  PubMed  Google Scholar 

  65. J. G. Croissant, C. Mauriello-Jimenez, M. Maynadier, X. Cattoen, M. W. C. Man, L. Raehm, O. Mongin, M. Blanchard-Desce, M. Garcia, M. Gary-Bobo, P. Maillard and J.-O. Durand, Synthesis of disulfide-based bio-degradable bridged silsesquioxane nanoparticles for two-photon imaging and therapy of cancer cells, Chem. Commun., 2015, 51, 12324–12327.

    Article  CAS  Google Scholar 

  66. W. A. Denny, Prodrug strategies in cancer therapy, Eur. J. Med. Chem., 2001, 36, 577–595

    Article  CAS  PubMed  Google Scholar 

  67. L. Bildstein, C. Dubernet and P. Couvreur, Prodrug-based intracellular delivery of anticancer agents, Adv. Drug Delivery Rev., 2011, 63, 3–23.

    Article  CAS  Google Scholar 

  68. S. Ozlem and E. U. Akkaya, Thinking outside the silicon box: molecular and logic as an additional layer of selecti-vity in singlet oxygen generation for photodynamic therapy, J. Am. Chem. Soc., 2009, 131, 48–49.

    Article  CAS  PubMed  Google Scholar 

  69. J. T. F. Lau, P.-C. Lo, X.-J. Jiang, Q. Wang and D. K. P. Ng, A dual activatable photosensitizer toward targeted photo-dynamic therapy, J. Med. Chem., 2014, 57, 4088–4097.

    Article  CAS  PubMed  Google Scholar 

  70. X.-J. Jiang, J. T. F. Lau, Q. Wang, D. K. P. Ng and P.-C. Lo, pH-and Thiol-responsive BODIPY-based photosensitizers for targeted photodynamic therapy, Chem. - Eur. J., 2016, 22, 8273–8281.

    Article  CAS  PubMed  Google Scholar 

  71. J. V. John, C.-W. Chung, R. P. Johnson, Y.-I. Jeong, K.-D. Chung, D. H. Kang, H. Suh, H. Chen and I. Kim, Dual stimuli-responsive vesicular nanospheres fabricated by lipopolymer hybrids for tumor-targeted photodynamic therapy, Biomacromolecules, 2016, 17, 20–31

    Article  CAS  PubMed  Google Scholar 

  72. E. van de Winckel, R. J. Schneider, A. de la Escosura and T. Torres, Multifunctional logic in a photosensitizer with triple-mode fluorescent and photodynamic activity, Chem. - Eur. J., 2015, 21, 18551–18556.

    Article  PubMed  CAS  Google Scholar 

  73. T. Torring, S. Helmig, P. R. Ogilby and K. V. Gothelf, Singlet oxygen in DNA nanotechnology, Acc. Chem. Res., 2014, 47, 1799–1806.

    Article  PubMed  CAS  Google Scholar 

  74. J. M. Kelly, W. J. M. Putten and D. J. Mcconnell, Laser flash spectroscopy of methylene blue with nucleic acids, Photochem. Photobiol., 1987, 45, 167–175.

    Article  CAS  PubMed  Google Scholar 

  75. K. Hirakawa, S. Kawanishi and T. Hirano, The mechanism of guanine specific photooxidation in the presence of ber-berine and palmatine: activation of photosensitized singlet oxygen generation through DNA-binding inter-action, Chem. Res. Toxicol., 2005, 18, 1545–1552.

    Article  CAS  PubMed  Google Scholar 

  76. N. N. Kruk, S. I. Shishporenok, A. A. Korotky, V. A. Galievsky, V. S. Chirvony and P.-Y. Turpin, Binding of the cationic 5,10,15,20-tetrakis(4-N-methylpyridyl) por-phyrin at 5'CG3' and 5'GC3' sequences of hexadeoxyribonu-cleotides: triplettriplet transient absorption, steady-state and time-resolved fluorescence and resonance Raman studies, J. Photochem. Photobiol., B, 1998, 45, 67–74.

    Article  CAS  Google Scholar 

  77. A. Shibata, H. Abe and Y. Ito, Oligonucleotide-templated reactions for sensing nucleic acids, Molecules, 2012, 17, 2446–2463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. E. Clo, J. W. Snyder, N. V. Voigt, P. R. Ogilby and K. V. Gothelf, DNA-programmed control of photosensi-tized singlet oxygen production, J. Am. Chem. Soc., 2006, 128, 4200–4201

    Article  CAS  PubMed  Google Scholar 

  79. for subsequent improvements of this system see: D. Arian, E. Clo, K. V. Gothelf and A. Mokhir, A nucleic acid dependent chemical photocatalysis in live human cells, Chem. - Eur. J., 2010, 16, 288–295.

  80. S. Tyagi and F. R. Kramer, Molecular beacons: probes that fluoresce upon hybridization, Nat. Biotechnol., 1996, 14, 303–308.

    Article  CAS  PubMed  Google Scholar 

  81. J. Chen, J. F. Lovell, P.-C. Lo, K. Stefflova, M. Niedre, B. C. Wilson and G. Zheng, A tumor mRNA-triggered photodynamic molecular beacon based on oligo-nucleotide hairpin control of singlet oxygen production, Photochem. Photobiol. Sci., 2008, 7, 775–781.

    Article  CAS  PubMed  Google Scholar 

  82. B. P. Monia, J. F. Johnston, T. Geiger, M. Muller and D. Fabbro, Antitumor activity of a phosphorothioate anti-sense oligodeoxynucleotide targeted against C-raf kinase, Nat. Med., 1996, 2, 668–675.

    Article  CAS  PubMed  Google Scholar 

  83. I. V. Nesterova, S. S. Erdem, S. Pakhomov, R. P. Hammer and S. A. Soper, Phthalocyanine dimerization-based mole-cular beacons using near-IR fluorescence, J. Am. Chem. Soc., 2009, 131, 2432–2433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Z. Zhu, Z. Tang, J. A. Phillips, R. Yang, H. Wang and W. Tan, Regulation of singlet oxygen generation using single-walled carbon nanotubes, J. Am. Chem. Soc., 2008, 130, 10856–10857.

    Article  CAS  PubMed  Google Scholar 

  85. D. Han, G. Zhu, C. Wu, Z. Zhu, T. Chen, X. Zhang and W. Tan, Engineering a cell-surface aptamer circuit for tar-geted and amplified photodynamic cancer therapy, ACS Nano, 2013, 7, 2312–2319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Q. Yuan, Y. Wu, J. Wang, D. Lu, Z. Zhao, T. Liu, X. Zhang and W. Tan, Targeted bioimaging and photodynamic therapy nanoplatform using an aptamer-guided g-quadru-plex DNA carrier and near-infrared light, Angew. Chem., Int. Ed., 2013, 52, 13965–13969.

    Article  CAS  Google Scholar 

  87. B. Epe, Genotoxicity of singlet oxygen, Chem.-Biol. Interact., 1991, 80, 239–260

    Article  CAS  PubMed  Google Scholar 

  88. S. W. Ryter and R. M. Tyrrell, Singlet molecular oxygen (1O2): A possible effector of eukaryotic gene expression, Free Radicals Biol. Med., 1998, 24, 1520–1534

    Article  CAS  Google Scholar 

  89. V. I. Bruskov, L. V. Malakhova, Z. K. Masalimov and A. V. Chernikov, Heat-induced formation of reactive oxygen species and 8-oxoguanine, a biomarker of damage to DNA, Nucleic Acids Res., 2002, 30, 1354–1363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. J. L. Ravanat, T. Douki and J. Cadet, Direct and indirect effects of UV radiation on DNA and its components, J. Photochem. Photobiol., B, 2001, 63, 88–102.

    Article  CAS  Google Scholar 

  91. R. F. Pasternack, E. J. Gibbs and J. J. Villafranca, Interactions of porphyrins with nucleic acids, Biochemistry, 1983, 22, 2406–2414.

    Article  CAS  PubMed  Google Scholar 

  92. K. Berg, P. K. Selbo, L. Prasmsickaite, T. E. Tjelle, K. Sandvig, D. Moan, G. Gaudernack, O. Fodstad, S. Kjolsrud, H. Anholt, G. H. Rodal, S. K. Rodal and A. Hogset, Photochemical internalization: a novel techno-logy for delivery of macromolecules into cytosol, Cancer Res., 1999, 59, 1180–1183

    CAS  PubMed  Google Scholar 

  93. N. Nishiyama, A. Iriyama, W. D. Jang, K. Miyata, K. Itaka, Y. Inoue, H. Takahashi, Y. Yanagi, Y. Tamaki, H. Koyama and K. Kataoka, Light-induced gene transfer from packaged DNA enveloped in a dendrimeric photosensitizer, Nat. Mater., 2005, 4, 934–941

    Article  CAS  PubMed  Google Scholar 

  94. K. Berg, M. Folini, L. Prasmickaite, P. K. Selbo, A. Bonsted, B. O. Engesaeter, N. Zaffaroni, A. Weyergang, A. Dietze, G. M. Maelandsmo, E. Wagner, O. J. Norum and A. Hogset, Photochemical internalization: A new tool for drug delivery, Curr. Pharm. Biotechnol., 2007, 8, 362–372.

    Article  CAS  PubMed  Google Scholar 

  95. J. Chen, K. Stefflova, M. J. Niedre, B. C. Wilson, B. Chance, J. D. Glickson and G. Zheng, Protease-triggered photosensitizing beacon based on singlet oxygen quench-ing and activation, J. Am. Chem. Soc., 2004, 126, 11450–11451.

    Article  CAS  PubMed  Google Scholar 

  96. K. Stefflova, J. Chen, D. Marotta, H. Li and G. Zheng, Photodynamic therapy agent with a built-in apoptosis sensor for evaluating its own therapeutic outcome in situ, J. Med. Chem., 2006, 49, 3850–3856.

    Article  CAS  PubMed  Google Scholar 

  97. J. F. Lovell, M. W. Chan, Q. Qi, J. Chen and G. Zheng, Porphyrin FRET Acceptors for apoptosis induction and monitoring, J. Am. Chem. Soc., 2011, 133, 18580–18582.

    Article  CAS  PubMed  Google Scholar 

  98. G. Zheng, J. Chen, K. Stefflova, M. Jarvi, H. Li and B. C. Wilson, Photodynamic molecular beacon as an acti-vatable photosensitizer based on protease-controlled singlet oxygen quenching and activation, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 8989–8994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. J. Kim, C.-H. Tung and Y. Choi, Smart dual-functional warhead for folate receptor-specific activatable imaging and photodynamic therapy, Chem. Commun., 2014, 50, 10600–10603.

    Article  CAS  Google Scholar 

  100. P.-C. Lo, J. Chen, K. Stefflova, M. S. Warren, R. Navab, B. Bandarchi, S. Mullins, M. Tsao, J. D. Cheng and G. Zheng, Photodynamic molecular beacon triggered by fibroblast activation protein on cancer-associated fibro-blasts for diagnosis and treatment of epithelial cancers, J. Med. Chem., 2009, 52, 358–368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. J. Chen, T. W. B. Liu, P.-C. Lo, B. C. Wilson and G. Zheng, “Zipper” molecular beacons: a generalized strategy to opti-mize the performance of activatable protease probes, Bioconjugate Chem., 2009, 20, 1836–1842.

    Article  CAS  Google Scholar 

  102. M.-R. Ke, S.-F. Chen, X.-H. Peng, Q.-F. Zheng, B.-Y. Zheng, C.-K. Yeh and J.-D. Huang, A tumor-targeted activatable phthalocyanine-tetrapeptide-doxorubicin conjugate for synergistic chemo-photodynamic therapy, Eur. J. Med. Chem., 2017, 127, 200–209.

    Article  CAS  PubMed  Google Scholar 

  103. T. Yogo, Y. Urano, M. Kamiya, K. Sano and T. Nagano, Development of enzyme-activated photosensitizer based on intramolecular electron transfer, Bioorg. Med. Chem. Lett., 2010, 20, 4320–4323

    Article  CAS  PubMed  Google Scholar 

  104. Y. Koide, Y. Urano, A. Yatsushige, K. Hanaoka, T. Terai and T. Nagano, Design and development of enzymatically activatable photosensi-tizer based on unique characteristics of thiazole orange, J. Am. Chem. Soc., 2009, 131, 6058–6059.

    Article  CAS  PubMed  Google Scholar 

  105. Y. Ichikawa, M. Kamiya, F. Obata, M. Miura, T. Terai, T. Komatsu, T. Ueno, K. Hanaoka, T. Nagano and Y. Urano, Selective ablation of ß-galactosidase-expressing cells with a rationally designed activatable photosensiti-zer, Angew. Chem., Int. Ed., 2014, 53, 6772–6775.

    Article  CAS  Google Scholar 

  106. M. Chiba, Y. Ichikawa, M. Kamiya, T. Komatsu, T. Ueno, K. Hanaoka, T. Nagano, N. Lange and Y. Urano, An activata-ble photosensitizer targeted to y-glutamyltranspeptidase, Angew. Chem., Int. Ed., 2017, 56, 10418–10422.

    Article  CAS  Google Scholar 

  107. N. Kashef, Y.-Y. Huang and M. W. Hamblin, Advances in antimicrobial photodynamic inactivation at the nano-scale, Nanophotonics, 2017, 6, 853–879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. X. Zheng, U. W. Sallum, S. Verma, H. Athar, C. L. Evans and T. Hasan, Exploiting a bacterial drug-resistance mechanism: a light-activated construct for the destruction of MRSA, Angew. Chem., Int. Ed., 2009, 48, 2148–2151.

    Article  CAS  Google Scholar 

  109. P. Montes-Navajas, A. Corma and H. Garcia, Complexation and fluorescence of tricyclic basic dyes encapsulated in cucurbiturils, ChemPhysChem, 2008, 9, 713–720

    Article  CAS  PubMed  Google Scholar 

  110. M. Gonzâlez-Béjar, P. Montes-Navajas, H. García and J. C. Scaiano, Methylene blue encapsulation in cucurbit[7]uril: laser flash photolysis and near-IR luminescence studies, Langmuir, 2009, 25, 10490–10494

    Article  PubMed  CAS  Google Scholar 

  111. P. Montes-Navajas, M. Gonzâlez-Béjar, J. C. Scaiano and H. García, Cucurbituril complexes cross the cell mem-brane, Photochem. Photobiol. Sci., 2009, 8, 1743–1747.

    Article  CAS  PubMed  Google Scholar 

  112. X. Q. Wang, Q. Lei, J. Y. Zhu, W. J. Wang, Q. Cheng, F. Gao, Y. X. Sun and X. Z. Zhang, Cucurbit[8]uril regu-lated activatable supramolecular photosensitizer for tar-geted cancer imaging and photodynamic therapy, ACS Appl. Mater. Interfaces, 2016, 8, 22892–22899.

    Article  CAS  PubMed  Google Scholar 

  113. J. Robinson-Duggon, F. Perez-Mora, L. Valverde-Vasquez, D. Cortes-Arriagada, J. R. De la Fuente, G. Gunther and D. Fuentealba, Supramolecular reversible on-off switch for singlet oxygen using cucurbit[n]uril inclusion complexes, J. Phys. Chem. C, 2017, 121, 21782–21789.

    Article  CAS  Google Scholar 

  114. J. Mei, N. L. C. Leung, R. T. K. Kwok, J. W. Y. Lam and B. Z. Tang, Aggregation-induced emission: together we shine, united we soar!, Chem. Rev., 2015, 115, 11718–11940.

    Article  CAS  PubMed  Google Scholar 

  115. S. Kim, Y. Zhou, N. Tohnai, H. Nakatsuji, M. Matsusaki, M. Fujitsuka, M. Miyata and T. Majima, Aggregation-induced singlet oxygen generation: functional fluorophore and anthrylphenylene dyad-self-assemblies, Chem. - Eur. J., 2018, 24, 636–645.

    Article  CAS  PubMed  Google Scholar 

  116. B. L. Feringa, in Molecular Switches, Wiley-VCH, Weinheim, 2001, ch. 2-4.

    Book  Google Scholar 

  117. K. Matsuda and M. Irie, Diarylethene as a photoswitch-ing unit, J. Photochem. Photobiol., C, 2004, 5, 169–182

    Article  CAS  Google Scholar 

  118. D. Bleger and S. Hecht, Visible-light-activated mole-cular switches, Angew. Chem., Int. Ed., 2015, 54, 11338–11349.

    Article  CAS  Google Scholar 

  119. L. Hou, X. Zhang, T. C. Pijper, W. R. Browne and B. L. Feringa, Reversible Photochemical control of singlet oxygen generation using diarylethene photochromic switches, J. Am. Chem. Soc., 2014, 136, 910–913.

    Article  CAS  PubMed  Google Scholar 

  120. S. Cobo, F. Lafolet, E. Saint-Aman, C. Philouze, C. Bucher, S. Silvi, A. Credi and G. Royal, Reactivity of a pyridinium-substituted dimethyldihydropyrene switch under aerobic conditions: self-sensitized photo-oxygenation and thermal release of singlet oxygen, Chem. Commun., 2015, 51, 13886–13889.

    Article  CAS  Google Scholar 

  121. J. Park, D. Feng, S. Yuan and H.-C. Zhou, Photochromic metal-organic frameworks: reversible control of singlet oxygen generation, Angew. Chem., Int. Ed., 2015, 54, 430–435.

    Article  CAS  Google Scholar 

  122. J. Park, Q. Jiang, D. Feng and H.-C. Zhou, Controlled gene-ration of singlet oxygen in living cells with tunable ratios of the photochromic switch in metal-organic frameworks, Angew. Chem., Int. Ed., 2016, 55, 7188–7193.

    Article  CAS  Google Scholar 

  123. T. J. Dougherty, M. T. Cooper and T. S. Mang, Cutaneous phototoxic occurrences in patients receiving Photofrin, Lasers Surg. Med., 1990, 10, 485–488

    Article  CAS  PubMed  Google Scholar 

  124. R. Ackroyd, N. Brown, D. Vernon, D. Roberts, T. Stephenson, S. Marcus, C. Stoddardl and M. Ree, 5-Aminolevulinic acid photosensitization of dysplastic Barrett's esophagus: a pharmacokinetic study, Photochem. Photobiol., 1999, 70, 656–662.

    CAS  PubMed  Google Scholar 

  125. K. I. Salokhiddinov, I. M. Byteva and G. P. Gurinovich, Lifetime of singlet oxygen in various solvents, J. Appl. Spectrosc., 1981, 34, 561–564

    Article  Google Scholar 

  126. J. R. Hurst, J. D. McDonald and G. B. Schuster, Lifetime of singlet oxygen in solution directly determined by laser spec-troscopy, J. Am. Chem. Soc., 1982, 104, 2065–2067

    Article  CAS  Google Scholar 

  127. M. Bregnhoj, M. Westberg, F. Jensen and P. R. Ogilby, Solvent-dependent singlet oxygen lifetimes: temperature effects implicate tunneling and charge-transfer inter-actions, Phys. Chem. Chem. Phys., 2016, 18, 22946–22961.

    Article  PubMed  CAS  Google Scholar 

  128. M. A. Filatov and M. O. Senge, Molecular devices based on reversible singlet oxygen binding in optical and photo-medical applications, Mol. Syst. Des. Eng., 2016, 1, 258–272.

    Article  CAS  Google Scholar 

  129. J.-M. Aubry, C. Pierlot, J. Rigaudy and R. Schmidt, Reversible binding of oxygen to aromatic compounds, Acc. Chem. Res., 2003, 36, 668–675.

    Article  CAS  PubMed  Google Scholar 

  130. C. Moureu, C. Dufraisse and P. M. Dean, Un peroxyde organique dissociable: le peroxyde de rubrene, C. R. Acad. Sci., 1926, 182, 1584–1587.

    Google Scholar 

  131. Y. A. Arbuzov, The Diels-Alder reaction with molecular oxygen as dienophile, Russ. Chem. Rev., 1965, 34, 558–574.

    Article  Google Scholar 

  132. H. H. Wasserman and J. R. Scheffer, Singlet oxygen reac-tions from photoperoxides, J. Am. Chem. Soc., 1967, 89, 3073–3075.

    Article  CAS  PubMed  Google Scholar 

  133. W. Freyer, H. Stiel, M. Hild, K. Teuchner and D. Leupold, One-and two-photon-induced photochemis-try of modified palladium porphyrazines involving mole-cular oxygen, Photochem. Photobiol., 1997, 66, 596–604

    Article  CAS  Google Scholar 

  134. F. Käsermann and C. Kempf, Inactivation of enveloped viruses by singlet oxygen thermally generated from a poly-meric naphthalene derivative, Antiviral Res., 1998, 38, 55–62

    Article  PubMed  Google Scholar 

  135. C. C. W. Changtong, D. W. Carney, L. Luo, C. A. Zoto, J. L. Lombardi and R. E. Connors, A porphyrin molecule that generates, traps, stores, and releases singlet oxygen, J. Photochem. Photobiol., A, 2013, 260, 9–13.

    Article  CAS  Google Scholar 

  136. B. D. Rihter, M. E. Kenney, W. E. Ford and M. A. J. Rodgers, Photochromic reactions involving palla-dium(II) octabutoxynaphthalocyanine and molecular oxygen, J. Am. Chem. Soc., 1993, 115, 8146–8152.

    Article  CAS  Google Scholar 

  137. M. A. Filatov, S. Karuthedath, P. M. Polestshuk, H. Savoie, K. J. Flanagan, C. Sy, E. Sitte, M. Telitchko, F. Laquai, R. W. Boyle and M. O. Senge, Generation of triplet excited states via photoinduced electron transfer in meso-anthra-BODIPY: fluorogenic response toward singlet oxygen in solution and in vitro, J. Am. Chem. Soc., 2017, 139, 6282–6285.

    Article  CAS  PubMed  Google Scholar 

  138. W. Fudickar and T. Linker, Synthesis of pyridylanthra-cenes and their reversible reaction with singlet oxygen to endoperoxides, J. Org. Chem., 2017, 82, 9258–9262.

    Article  CAS  PubMed  Google Scholar 

  139. C. K. Sen, Wound healing essentials: Let there be oxygen, Wound Repair Regen., 2009, 17, 1–18.

    Article  PubMed  PubMed Central  Google Scholar 

  140. S. Benz, S. Notzli, J. S. Siegel, D. Eberli and H. J. Jessen, Controlled oxygen release from pyridone endoperoxides promotes cell survival under anoxic conditions, J. Med. Chem., 2013, 56, 10171–10182.

    Article  CAS  PubMed  Google Scholar 

  141. I. S. Turan, D. Yildiz, A. Turksoy, G. Gunaydin and E. U. Akkaya, A Bifunctional photosensitizer for enhanced fractional photodynamic therapy: singlet oxygen gene-ration in the presence and absence of light, Angew. Chem., Int. Ed., 2016, 55, 2875–2878.

    Article  CAS  Google Scholar 

  142. S. Callaghan, M. A. Filatov, E. Sitte, H. Savoie, R. W. Boyle, K. J. Flanagan and M. O. Senge, Delayed release singlet oxygen sensitizers based on pyridone-appended porphyr-ins, Photochem. Photobiol. Sci., 2017, 16, 1371–1374.

    Article  CAS  PubMed  Google Scholar 

  143. S. Martins, J. P. S. Farinha, C. Baleizao and M. N. Berberan-Santos, Controlled release of singlet oxygen using diphenylanthracene functionalized polymer nanoparticles, Chem. Commun., 2014, 50, 3317–3320

    Article  CAS  Google Scholar 

  144. A. M. Asadirad, Z. Erno and N. R. Branda, Photothermal release of singlet oxygen from gold nano-particles, Chem. Commun., 2013, 49, 5639–5641.

    Article  CAS  Google Scholar 

  145. S. Kolemen, T. Ozdemir, D. Lee, G. M. Kim, T. Karatas, J. Yoon and E. U. Akkaya, Remote-controlled release of singlet oxygen by the plasmonic heating of endoperoxide-modified gold nanorods: towards a paradigm change in photodynamic therapy, Angew. Chem., Int. Ed., 2016, 55, 3606–3610.

    Article  CAS  Google Scholar 

  146. D. Trachootham, J. Alexandre and P. Huang, Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach?, Nat. Rev. Drug Discovery, 2009, 8, 579–591.

    Article  CAS  PubMed  Google Scholar 

  147. A. M. Durantini, L. E. Greene, R. Lincoln, S. R. Martinez and G. Cosa, Reactive oxygen species mediated activation of a dormant singlet oxygen photosensitizer: from autoca-talytic singlet oxygen amplification to chemicontrolled photodynamic therapy, J. Am. Chem. Soc., 2016, 138, 1215–1225.

    Article  CAS  PubMed  Google Scholar 

  148. M. B. Bakar, M. Oelgemoller and M. O. Senge, Lead struc-tures for applications in photodynamic therapy. Part 2: Synthetic studies for photo-triggered release systems of bioconjugate porphyrin photosensitizers, Tetrahedron, 2009, 65, 7064–7078.

    Article  CAS  Google Scholar 

  149. R. Robert and B. F. Schmidt, Nitrobenzyl-based photosen-sitive phosphoramide mustards: synthesis and photoche-mical properties of potential prodrugs for cancer therapy, J. Org. Chem., 1998, 63, 2434–2441.

    Article  Google Scholar 

  150. G. Saravanakumar, J. Kim and W. J. Kim, Reactive-oxygen-species-responsive drug delivery systems: promises and challenges, Adv. Sci., 2017, 4, 1600124.

    Article  CAS  Google Scholar 

  151. A. Ruebner, Z. Yang, D. Leung and R. Breslow, A cyclo-dextrin dimer with a photocleavable linker as a possible carrier for the photosensitizer in photodynamic tumor therapy, Proc. Natl. Acad. Sci. U. S. A., 1999, 96, 14692–14693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. S. D. P. Baugh, Z. Yang, D. K. Leung, D. M. Wilson and R. Breslow, Cyclodextrin dimers as clea-vable carriers of photodynamic sensitizers, J. Am. Chem. Soc., 2001, 123, 12488–12494.

    Article  CAS  PubMed  Google Scholar 

  153. M. Y. Jiang and D. Dolphin, Site-specific prodrug release using visible light, J. Am. Chem. Soc., 2008, 130, 4236–4237.

    Article  CAS  PubMed  Google Scholar 

  154. M. Zamadar, G. Ghosh, A. Mahendran, M. Minnis, B. I. Kruft, A. Ghogare, D. Aebisher and A. Greer, Photosensitizer drug delivery via an optical fiber, J. Am. Chem. Soc., 2011, 133, 7882–7891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. A. Mahendran, Y. Kopkalli, G. Ghosh, A. Ghogare, M. Minnis, B. I. Kruft, M. Zamadar, D. Aebisher, L. Davenport and A. Greer, A hand-held fiber-optic implement for the site-specific delivery of photosensitizer and singlet oxygen, Photochem. Photobiol., 2011, 87, 1330–1337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. D. Bartusik, D. Aebisher, G. Ghosh, M. Minnis and A. Greer, Fluorine end-capped optical fibers for photosensitizer release and singlet oxygen production, J. Org. Chem., 2012, 77, 4557–4565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. D. Bartusik, M. Minnis, G. Ghosh and A. Greer, Autocatalytic-assisted photorelease of a sensitizer drug bound to a silica support, J. Org. Chem., 2013, 78, 8537–8544

    Article  CAS  PubMed  Google Scholar 

  158. G. Ghosh, M. Minnis, A. A. Ghogare, I. Abramova, K. A. Cengel, T. M. Busch and A. Greer, Photoactive fluoropolymer surfaces that release sensitizer drug molecules, J. Phys. Chem. B, 2015, 119, 4155–4164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. D. Bartusik, D. Aebisher, A. Ghogare, G. Ghosh, I. Abramova, T. Hasan and A. Greer, A fiberoptic (photo-dynamic therapy type) device with a photosensitizer and singlet oxygen delivery probe tip for ovarian cancer cell killing, Photochem. Photobiol., 2013, 89, 936–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. A. A. Ghogare, I. Rizvi, T. Hasan and A. Greer, “Pointsource” delivery of a photosensitizer drug and singlet oxygen: eradication of glioma cells in vitro, Photochem. Photobiol., 2014, 90, 1119–1125.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. A. A. Ghogare, J. M. Miller, B. Mondal, A. M. Lyons, K. A. Cengel, T. M. Busch and A. Greer, Fluorinated photo-dynamic therapy device tips and their resistance to fouling for in vivo, sensitizer release, Photochem. Photobiol., 2016, 92, 166–172.

    Article  CAS  PubMed  Google Scholar 

  162. S. Protti, A. Albini, R. Viswanathan and A. Greer, Targeting photochemical scalpels or lancets in the photo-dynamic therapy field-the photochemist’s role, Photochem. Photobiol., 2017, 93, 1139–1153.

    Article  CAS  PubMed  Google Scholar 

  163. J. Lee, J. Park, K. Singha and W. J. Kim, Mesoporous silica nanoparticle facilitated drug release through cascade photosensitizer activation and cleavage of singlet oxygen sensitive linker, Chem. Commun., 2013, 49, 1545–1547

    Article  CAS  Google Scholar 

  164. S. Chai, Y. Guo, Z. Zhang, Z. Chai, Y. Ma and L. Qi, Cyclodextrin-gated mesoporous silica nanoparticles as drug carriers for red light-induced drug release, Nanotechnology, 2017, 28, 145101.

    Article  PubMed  CAS  Google Scholar 

  165. G. Yang, X. Sun, J. Liu, L. Feng and Z. Liu, Light-respon-sive, singlet-oxygen-triggered on-demand drug release from photosensitizer-doped mesoporous silica nanorods for cancer combination therapy, Adv. Funct. Mater., 2016, 26, 4722–4732.

    Article  CAS  Google Scholar 

  166. G. Saravanakumar, J. Lee, J. Kim and W. J. Kim, Visible light-induced singlet oxygen-mediated intracellular disas-sembly of polymeric micelles co-loaded with a photosensi-tizer and an anticancer drug for enhanced photodynamic therapy, Chem. Commun., 2015, 51, 9995–9998.

    Article  CAS  Google Scholar 

  167. J. Liu, G. Yang, W. Zhu, Z. Dong, Y. Yang, Y. Chao and Z. Liu, Light-controlled drug release from singlet-oxygen sensitive nanoscale coordination polymers enabling cancer combination therapy, Biomaterials, 2017, 146, 40–48.

    Article  CAS  PubMed  Google Scholar 

  168. M. Bio, G. Nkepang and Y. You, Click and photo-unclick chemistry of aminoacrylate for visible light-triggered drug release, Chem. Commun., 2012, 48, 6517–6519.

    Article  CAS  Google Scholar 

  169. M. Bio, P. Rajaputra, G. Nkepang, S. G. Awuah, A. M. L. Hossion and Y. You, Site-specific and far-red-light-activatable prodrug of combretastatin a-4 using photo-unclick chemistry, J. Med. Chem., 2013, 56, 3936–3942.

    Article  CAS  PubMed  Google Scholar 

  170. A. M. L. Hossion, M. Bio, G. Nkepang, S. G. Awuah and Y. You, Visible light controlled release of anticancer drug through double activation of prodrug, ACS Med. Chem. Lett., 2013, 4, 124–127.

    Article  CAS  PubMed  Google Scholar 

  171. M. Bio, P. Rajaputra, G. Nkepang and Y. You, Far-red light activatable, multifunctional prodrug for fluorescence optical imaging and combinational treatment, J. Med. Chem., 2014, 57, 3401–3409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. P. Thapa, M. Li, M. Bio, P. Rajaputra, G. Nkepang, Y. Sun, S. Woo and Y. You, Far-red light-activatable prodrug of paclitaxel for the combined effects of photodynamic therapy and site-specific paclitaxel chemotherapy, J. Med. Chem., 2016, 59, 3204–3214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. G. Nkepang, M. Bio, P. Rajaputra, S. G. Awuah and Y. You, Folate receptor-mediated enhanced and specific delivery of far-red light-activatable prodrugs of combretastatin a-4 to FR-positive tumor, Bioconjugate Chem., 2014, 25, 2175–2188.

    Article  CAS  Google Scholar 

  174. Y. Liu, T. Pauloehrl, S. I. Presolski, L. Albertazzi, A. R. A. Palmans and E. W. Meijer, Modular synthetic plat-form for the construction of functional single-chain poly-meric nanoparticles: from aqueous catalysis to photosen-sitization, J. Am. Chem. Soc., 2015, 137, 13096–13105.

    Article  CAS  PubMed  Google Scholar 

  175. M. Martmez-Carmona, D. Lozano, A. Baeza, M. Colilla and M. Vallet-Reg, A novel visible light responsive nano-system for cancer treatment, Nanoscale, 2017, 9, 15967–15973.

    Article  Google Scholar 

  176. D. Arian, L. Kovbasyuk and A. Mokhir, 1,9-Dialkyloxyanthracene as a 1O2-sensitive linker, J. Am. Chem. Soc., 2011, 133, 3972–3980.

    Article  CAS  PubMed  Google Scholar 

  177. H. H. Wasserman, K. Stiller and M. B. Floyd, The reac-tions of heterocyclic systems with singlet oxygen. Photosensitized oxygenation of imidazoles, Tetrahedron Lett., 1968, 9, 3277–3280.

    Article  Google Scholar 

  178. X. Li, M. Gao, K. Xin, L. Zhang, D. Ding, D. Kong, Z. Wang, Y. Shi, F. Kiessling, T. Lammers, J. Cheng and Y. Zhao, Singlet oxygen-responsive micelles for enhanced photodynamic therapy, J. Controlled Release, 2017, 260, 12–21.

    Article  CAS  Google Scholar 

  179. S.-L. Ryan, A.-M. Baird, G. Vaz, A. J. Urquhart, M. O. Senge, D. J. Richard, K. J. O’Byrne and A. M. Davies, Drug Discovery Approaches Utilizing Three-Dimensional Cell Culture, Assay Drug Dev. Technol., 2016, 14, 19–28.

    Article  CAS  PubMed  Google Scholar 

  180. A. L. Harris, Hypoxia-A key regulatory factor in tumour growth, Nat. Rev. Cancer, 2002, 2, 38–47.

    Article  CAS  PubMed  Google Scholar 

  181. N. Kiseleva, M. A. Filatov, M. Oldenburg, D. Busko, M. Jakoby, I. A. Howard, B. S. Richards, M. O. Senge, S. M. Borisov and A. Turshatov, The Janus-faced chromo-phore: a donor-acceptor dyad with dual performance in photon up-conversion, Chem. Commun., 2018, 54, 1607–1610.

    Article  CAS  Google Scholar 

  182. S. Trashin, V. Rahemi, K. Ramji, L. Neven, S. M. Gorun and K. De Wael, Singlet oxygen-based electrosensing by molecular photosensitizers, Nat. Commun., 2017, 8, 16108.

    Article  CAS  PubMed Central  Google Scholar 

  183. Q. S. Meng, J. Meng, W. Ran, J. H. Su, Y. G. Yang, P. C. Zhang and Y. P. Li, Chemical antagonism between photodynamic agents and chemotherapeutics: mecha-nism and avoidance, Chem. Commun., 2017, 53, 12438–12441

    Article  CAS  Google Scholar 

  184. E. Crescenzi, A. Chiaviello, G. Canti, E. Reddi, B. M. Veneziani and G. Palumbo, Low doses of cisplatin or gemcitabine plus Photofrin/photodynamic therapy: dis-jointed cell cycle phase-related activity accounts for syner-gistic outcome in metastatic non-small cell lung cancer cells (H1299), Mol. Cancer Ther., 2006, 5, 776–785.

    Article  CAS  PubMed  Google Scholar 

  185. A. A. Ryan and M. O. Senge, How green is green chem-istry? Chlorophylls as a bioresource from biorefineries and their commercial potential in medicine and photovol-taics, Photochem. Photobiol. Sci., 2015, 14, 638–660

    Article  CAS  PubMed  Google Scholar 

  186. M. Kielmann, C. Prior and M. O. Senge, Porphyrins in troubled times: a spotlight on porphyrins and their metal complexes for explosives testing and CBRN defense, New J. Chem., 2018, 42, DOI: 10.1039/C7NJ04679K.

  187. I. N. Meshkov, V. Bulach, Y. G. Gorbunova, F. E. Gostev, V. A. Nadtochenko, A. Y. Tsivadze and M. W. Hosseini, Tuning photochemical properties of phosphorus(V)porphyrin photosensitizers, Chem. Commun., 2017, 53, 9918–9921.

    Article  CAS  Google Scholar 

  188. M. E. Bulina, D. M. Chudakov, O. V. Britanova, Y. G. Yanushevich, D. B. Staroverov, T. V. Chepurnykh, E. M. Merzlyak, M. A. Shkrob, S. Lukyanov and K. A. Lukyanov, A genetically encoded photosensitizer, Nat. Biotechnol., 2006, 24, 95–99

    Article  CAS  PubMed  Google Scholar 

  189. R. B. Vegh, K. M. Solntsev, M. K. Kuimova, S. Cho, Y. Liang, B. L. W. Loo, L. M. Tolbert and A. S. Bommarius, Reactive oxygen species in photochemistry of the red fluorescent protein “Killer Red”, Chem. Commun., 2011, 47, 4887–4889.

    Article  CAS  Google Scholar 

  190. M. V. Shirmanova, E. O. Serebrovskaya, K. A. Lukyanov, L. B. Snopova, M. A. Sirotkina, N. N. Prodanetz, M. L. Bugrova, E. A. Minakova, I. V. Turchin, V. A. Kamensky, S. A. Lukyanov and E. V. Zagaynova, Phototoxic effects of fluorescent protein KillerRed on tumor cells in mice, J. Biophotonics, 2013, 6, 283–290.

    Article  CAS  PubMed  Google Scholar 

  191. R. Ruiz-Gonzalez, A. L. Cortajarena, S. H. Mejias, M. Agut, S. Nonell and C. Flors, Singlet oxygen generation by the genetically encoded tag MiniSOG, J. Am. Chem. Soc., 2013, 135, 9564–9567.

    Article  CAS  PubMed  Google Scholar 

  192. X. Ragàs, L. P. Cooper, J. H. White, S. Nonell and C. Flors, Quantification of photosensitized singlet oxygen pro-duction by a fluorescent protein, ChemPhysChem, 2011, 12, 161–165.

    Article  PubMed  CAS  Google Scholar 

  193. J. Torra, A. Burgos-Caminal, S. Endres, M. Wingen, T. Drepper, T. Gensch, R. Ruiz-Gonzaleza and S. Nonell, Singlet oxygen photosensitisation by the fluorescent protein Pp2FbFP L30M, a novel derivative of Pseudomonas putida flavin-binding Pp2FbFP, Photochem. Photobiol. Sci., 2015, 14, 280–287.

    Article  CAS  PubMed  Google Scholar 

  194. M. Westberg, L. Holmegaard, F. M. Pimenta, M. Etzerodt and P. R. Ogilby, Rational design of an efficient, geneti-cally encodable, protein-encased singlet oxygen photo-sensitizer, J. Am. Chem. Soc., 2015, 137, 1632–1642.

    Article  CAS  PubMed  Google Scholar 

  195. M. Westberg, M. Bregnhoj, M. Etzerodt and P. R. Ogilby, No photon wasted: an efficient and selective singlet oxygen photosensitizing protein, J. Phys. Chem. B, 2017, 121, 9366–9371.

    Article  CAS  PubMed  Google Scholar 

  196. J. Y. Lin, S. B. Sann, K. Zhou, S. Nabavi, C. D. Proulx, R. Malinow, Y. Jin and R. Y. Tsien, Optogenetic inhibition of synaptic release with chromophore-assisted light inacti-vation (CALI), Neuron, 2013, 79, 241–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. K. Noma and Y. Jin, Optogenetic mutagenesis in Caenorhabditis elegans, Nat. Commun., 2015, 6, 8868.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 764837 and was supported by grants from Science Foundation Ireland (IvP 13/IA/1894) and the Irish Research Council (GOIPG/2016/1250).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias O. Senge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Callaghan, S., Senge, M.O. The good, the bad, and the ugly–controlling singlet oxygen through design of photosensitizers and delivery systems for photodynamic therapy. Photochem Photobiol Sci 17, 1490–1514 (2018). https://doi.org/10.1039/c8pp00008e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00008e

Navigation