Skip to main content

Advertisement

Log in

Review of novel materials as photosensitizers towards the bottleneck of photodynamic therapy

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Photodynamic therapy (PDT) is a safe and effective therapeutic option for the management of cancer and other diseases. However, the issues of light (dose and wavelength), tumour selectivity of photosensitizers (PSs), and tumour hypoxia limit its broad clinical application, especially in the therapy of deep-seated tumours. Photosensitizers (PSs) are the core components of PDT which yield 1O2 or cytotoxic radical to achieve photodynamic therapy. Therefore, to meet the clinical requirements, developing novel PSs is urgently needed. In this review, we describe 4 newly emergent PSs for PDT including aggregation-induced emission PS, near-infrared-II PS, nano-PS, and metal–organic framework PS, and strategies which hold promise solving the current issues of PDT. These PSs and strategies will aid the future research and provide the greatest hope for clinical transformation of PDT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. Oleinick NL, Morris RL, Belichenko I (2002) The role of apoptosis in response to photodynamic therapy: what, where, why, and how. Photo Photo Sci 1:1–21. https://doi.org/10.1039/b108586g

    Article  CAS  Google Scholar 

  2. Sharman WM, Allen CM, Lier JEV (2000) Role of activated oxygen species in photodynamic therapy. Method Enzymol 319:376–400. https://doi.org/10.1016/s0076-6879(00)19037-8

    Article  CAS  Google Scholar 

  3. Dougherty TJ, Grindey GB, Fiel R, Weishaupt KR, Boyle DG (1975) Photoradiation therapy. II. Cure of animal tumors with hematoporphyrin and light. J Nat Cancer I 55:115–121. https://doi.org/10.1093/jnci/55.1.115

    Article  CAS  Google Scholar 

  4. Dolmans DEJGJ, Dai F, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3:380–387. https://doi.org/10.1136/gut.50.4.549

    Article  CAS  Google Scholar 

  5. Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D (2015) Photodynamic therapy of cancer: an update. World health organization

  6. Green B, Cobb ARM, Brennan PA, Hopper C (2014) Optical diagnostic techniques for use in lesions of the head and neck: review of the latest developments. Bri J Oral Max Surg 52:675–680. https://doi.org/10.1016/j.bjoms.2014.06.010

    Article  Google Scholar 

  7. Lan G, Ni K, Lin W (2019) Nanoscale metal-organic frameworks for phototherapy of cancer. Coord Chem Rev 379:65–81. https://doi.org/10.1016/j.ccr.2017.09.007

    Article  CAS  Google Scholar 

  8. Bredell MG, Besic E, Maake C, Walt H (2010) The application and challenges of clinical PD–PDT in the head and neck region: a short review. J Photochem Photobiol B 101:185–190. https://doi.org/10.1016/j.jphotobiol.2010.07.002

    Article  CAS  Google Scholar 

  9. Yanovsky RL, Bartenstein DW, Rogers GS, Isakoff SJ, Chen ST (2019) Photodynamic therapy for solid tumors: a review of the literature. Photodermatol Photoimmunol Photomed 35:295–303. https://doi.org/10.1111/phpp.12489

    Article  Google Scholar 

  10. Oleinick N, Evans H (1998) The photobiology of photodynamic therapy: cellular targets and mechanisms. Radiat Res 150:S146. https://doi.org/10.2307/3579816

    Article  CAS  Google Scholar 

  11. Lucky SS, Soo KC, Zhang Y (2015) Nanoparticles in photodynamic therapy. Chem Rev 115:1990–2042. https://doi.org/10.1021/cr5004198

    Article  CAS  Google Scholar 

  12. Zheng H, Xu H, Meyers AD, Musani AI, Wang L, Tagg R, Barqawi AB, Yang KC (2008) Photodynamic therapy for treatment of solid tumors–potential and technical challenges. Technol Cancer Res Treat 7:309–320. https://doi.org/10.1177/153303460800700405

    Article  Google Scholar 

  13. Fingar VH, Wieman TJ, Park YJ, Henderson BW (2019) Implications of a pre-existing tumor hypoxic fraction on photodynamic therapy. J Surg Res 53:524–528. https://doi.org/10.1016/0022-4804(92)90101-5

    Article  Google Scholar 

  14. Larue L, Myrzakhmetov B, Ben-Mihoub A, Moussaron A, Thomas N, Arnoux P, Baros F, Vanderesse R, Acherar S, Frochot C (2019) Fighting hypoxia to improve PDT. Pharmaceuticals (Basel) 12:163. https://doi.org/10.3390/ph12040163

    Article  CAS  Google Scholar 

  15. Wan Y, Fu LH, Li C, Lin J, Huang P (2021) Conquering the hypoxia limitation for photodynamic therapy. Adv Mater 33:e2103978. https://doi.org/10.1002/adma.202103978

    Article  CAS  Google Scholar 

  16. Lismont M, Dreesen L, Wuttke S (2017) Metal-organic framework nanoparticles in photodynamic therapy: current status and perspectives. Adv Funct Mater 27:1606314. https://doi.org/10.1002/adfm.201606314

    Article  CAS  Google Scholar 

  17. Tang BZ, Zhan X, Gui Y, Lee PPS, Liu Y, Zhu D (2001) Efficient blue emission from siloles. J Mater Chem 11:2974–2978. https://doi.org/10.1039/B102221K

    Article  CAS  Google Scholar 

  18. Luo J, Xie Z, Lam JW, Cheng L, Chen H, Qiu C, Kwok HS, Zhan X, Liu Y, Zhu D, Tang BZ (2001) Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem Commun. https://doi.org/10.1039/b105159h

    Article  Google Scholar 

  19. Liu Z, Zou H, Zhao Z, Zhang P, Shan G-G, Kwok RTK, Lam JWY, Zheng L, Tang BZ (2019) Tuning organelle specificity and photodynamic therapy efficiency by molecular function design. ACS Nano 13:11283–11293. https://doi.org/10.1021/acsnano.9b04430

    Article  CAS  Google Scholar 

  20. Liu B (2017) Aggregation-induced emission: Materials and biomedical applications. MRS Bull 42:458–463. https://doi.org/10.1557/mrs.2017.93

    Article  Google Scholar 

  21. Wang D, Su H, Kwok RTK, Shan G, Leung ACS, Lee MMS, Sung HHY, Williams ID, Lam JWY, Tang BZ (2017) Facile synthesis of red/NIR AIE luminogens with simple structures, bright emissions, and high photostabilities, and their applications for specific imaging of lipid droplets and image-guided photodynamic therapy. Adv Funct Mater 27:1704039. https://doi.org/10.1002/adfm.201704039

    Article  CAS  Google Scholar 

  22. Dong W, Michelle M, Suet L, Wenhan Xu, Ryan T (2018) Theranostics based on AIEgens. Theranostics 8:4925. https://doi.org/10.7150/thno.27787

    Article  CAS  Google Scholar 

  23. Zhu C, Kwok RTK, Lam JWY, Tang BZ (2018) Aggregation-induced emission: a trailblazing journey to the field of biomedicine. ACS Appl Bio Mater 1:1768–1786. https://doi.org/10.1021/acsabm.8b00600

    Article  CAS  Google Scholar 

  24. Li Q, Li Y, Min T, Gong J, Du L, Phillips DL (2020) Time-dependent photodynamic therapy for multiple targets a highly efficient AIE-active photosensitizer for selective bacterial elimination and cancer cell ablation. Angew Chem Int Ed 59:9470. https://doi.org/10.1002/anie.201909706

    Article  CAS  Google Scholar 

  25. Han K, Wang SB, Lei Q, Zhu JY, Zhang XZ (2015) Ratiometric biosensor for aggregation-induced emission-guided precise photodynamic therapy. ACS Nano 9:10268–10277. https://doi.org/10.1021/acsnano.5b04243

    Article  CAS  Google Scholar 

  26. Li M, Gao Y, Yuan Y, Wu Y, Song Z, Tang BZ, Liu B, Zheng QC (2017) One-step formulation of targeted aggregation-induced emission dots for image-guided photodynamic therapy of cholangiocarcinoma. ACS Nano 11:3922–3932. https://doi.org/10.1021/acsnano.7b00312

    Article  CAS  Google Scholar 

  27. Zhang Z, Wang R, Luo R, Zhu J, Huang X, Liu W, Liu F, Feng F, Qu W (2021) An activatable theranostic nanoprobe for dual-modal imaging-guided photodynamic therapy with self-reporting of sensitizer activation and therapeutic effect. ACS Nano 15:5366–5383. https://doi.org/10.1021/acsnano.0c10916

    Article  CAS  Google Scholar 

  28. Yang Z, Zhang Z, Lei Z, Wang D, Tang BZ (2021) Precise molecular engineering of small organic phototheranostic agents toward multimodal imaging-guided synergistic therapy. ACS Nano 15:7328–7339. https://doi.org/10.1021/acsnano.1c00585

    Article  CAS  Google Scholar 

  29. Zhou T, Hu R, Wang L, Qiu Y, Zhang G, Deng Q, Zhang H, Yin P, Situ B, Zhan C, Qin A, Tang BZ (2020) An AIE-active conjugated polymer with high ros-generation ability and biocompatibility for efficient photodynamic therapy of bacterial infections. Angew Chem Int Ed Engl 132:10038. https://doi.org/10.1002/anie.201916704

    Article  CAS  Google Scholar 

  30. Sun X, Zebibula A, Dong X, Zhang G, Zhang D, Qian J, He S (2018) Aggregation-induced emission nanoparticles encapsulated with pegylated nano graphene oxide and their applications in two-photon fluorescence bioimaging and photodynamic therapy in vitro and in vivo. ACS Appl Mater Inter 10:25037–25046. https://doi.org/10.1021/acsami.8b05546

    Article  CAS  Google Scholar 

  31. Wu W, Mao D, Xu S, Panahandeh-Fard M, Duan Y, Hu F, Kong D, Liu B (2019) Precise molecular engineering of photosensitizers with aggregation-induced emission over 800 nm for photodynamic therapy. Adv Funct Mater 29:1901791. https://doi.org/10.1002/adfm.201901791

    Article  CAS  Google Scholar 

  32. Yuan Y, Feng G, Qin W, Tang BZ, Liu B (2014) Targeted and image-guided photodynamic cancer therapy based on organic nanoparticles with aggregation-induced emission characteristics. Chem Commun 50:8757–8760. https://doi.org/10.1039/c4cc02767a

    Article  CAS  Google Scholar 

  33. Zhang Y, Zhao X, Li Y, Wang X, Wang Q, Lu H, Zhu L (2019) A fluorescent photosensitizer with far red/near-infrared aggregation-induced emission for imaging and photodynamic killing of bacteria. Dyes Pigments 165:53–57. https://doi.org/10.1016/j.dyepig.2019.02.019

    Article  CAS  Google Scholar 

  34. Wang S, Wu W, Manghnani P, Xu S, Wang Y, Goh CC, Ng LG, Liu B (2019) Polymerization-enhanced two-photon photosensitization for precise photodynamic therapy. ACS Nano 13:3095–3105. https://doi.org/10.1021/acsnano.8b08398

    Article  CAS  Google Scholar 

  35. Zhuang W, Yang L, Ma B, Kong Q, Li G, Wang Y, Tang BZ (2019) Multifunctional two-photon aie luminogens for highly mitochondria-specific bioimaging and efficient photodynamic therapy. ACS Appl Mater Inter 11:20715–20724. https://doi.org/10.1021/acsami.9b04813

    Article  CAS  Google Scholar 

  36. Zheng Z, Zhang T, Liu H, Chen Y, Kwok RTK, Ma C, Zhang P, Sung HHY, Williams ID, Lam JWY, Wong KS, Tang BZ (2018) Bright near-infrared aggregation-induced emission luminogens with strong two-photon absorption, excellent organelle specificity, and efficient photodynamic therapy potential. ACS Nano 12:8145–8159. https://doi.org/10.1021/acsnano.8b03138

    Article  CAS  Google Scholar 

  37. Guo B, Wu M, Shi Q, Dai T, Xu S, Jiang J, Liu B (2020) All-in-one molecular aggregation-induced emission theranostics: Fluorescence image guided and mitochondria targeted chemo- and photodynamic cancer cell ablation. Chem Mater 32:4681. https://doi.org/10.1021/acs.chemmater.0c01187

    Article  CAS  Google Scholar 

  38. Wang S, Chen H, Liu J, Chen C, Liu B (2020) NIR-II light activated photosensitizer with aggregation-induced emission for precise and efficient two-photon photodynamic cancer cell ablation. Adv Funct Mater 30:2002546. https://doi.org/10.1002/adfm.202002546

    Article  CAS  Google Scholar 

  39. Zheng Z, Zhang TF, Liu HX, Chen YC, Kwok RT, Ma C (2018) Bright near-infrared aggregation-induced emission luminogens with strong two-photon absorption, excellent organelle specificity and efficient photodynamic therapy. ACS Nano 12:8145–8159. https://doi.org/10.1021/acsnano.8b03138

    Article  CAS  Google Scholar 

  40. Qin W, Ding D, Liu J, Yuan WZ, Hu Y, Liu B, Tang BZ (2012) Biocompatible nanoparticles with aggregation-induced emission characteristics as far-red/near-infrared fluorescent bioprobes for in vitro and in vivo imaging applications. Adv Funct Mater 22:771–779. https://doi.org/10.1002/adfm.201102191

    Article  CAS  Google Scholar 

  41. Tanaka T, Shiramoto S, Miyashita M, Fujishima Y, Kaneo Y (2004) Tumor targeting based on the effect of enhanced permeability and retention (EPR) and the mechanism of receptor-mediated endocytosis (RME). Int J Pharmaceut 277:39–61. https://doi.org/10.1016/j.ijpharm.2003.09.050

    Article  CAS  Google Scholar 

  42. Dong W, Michelle L, Shan GG, Kwok RTK, Lam JWY, Su HF, Cai YC, Tang BZ (2018) Highly efficient photosensitizers with far-red/near-infrared aggregation-induced emission for in vitro and in vivo cancer theranostics. Adv Mater 30:e1802105. https://doi.org/10.1002/adma.201802105

    Article  CAS  Google Scholar 

  43. Yuan YY, Zhang C-J, Gao M, Zhang RY, Tang BZ, Liu B (2018) Specific light-up bioprobe with aggregation-induced emission and activatable photoactivity for the targeted and image-guided photodynamic ablation of cancer cells. Angew Chem 127:1800–1806. https://doi.org/10.1002/anie.201408476

    Article  CAS  Google Scholar 

  44. Liu Y, Meng X, Bu W (2019) Upconversion-based photodynamic cancer therapy. Coord Chem Rev 379:82–98. https://doi.org/10.1016/j.ccr.2017.09.006

    Article  CAS  Google Scholar 

  45. Fan W, Yung B, Huang P, Chen X (2017) Nanotechnology for multimodal synergistic cancer therapy. Chem Rev 117:13566–13638. https://doi.org/10.1021/acs.chemrev.7b00258

    Article  CAS  Google Scholar 

  46. He S, Song J, Qu J, Cheng Z (2018) Crucial breakthrough of second near-infrared biological window fluorophores: design and synthesis toward multimodal imaging and theranostics. Chem Soc Rev 47:4258–4278. https://doi.org/10.1039/c8cs00234g

    Article  CAS  Google Scholar 

  47. Zhao J, Zhong D, Zhou S (2018) NIR-I to NIR-II fluorescent nanomaterials for biomedical imaging and cancer therapy. J Mater Chem B 6:349–365. https://doi.org/10.1039/c7tb02573d

    Article  CAS  Google Scholar 

  48. Antaris AL, Chen H, Cheng K, Sun Y, Hong G, Qu C, Diao S, Deng Z, Hu X, Zhang B, Zhang X, Yaghi OK, Alamparambil ZR, Hong X, Cheng Z, Dai H (2016) A small-molecule dye for nir-ii imaging. Nat Mater 15:235–242. https://doi.org/10.1038/nmat4476

    Article  CAS  Google Scholar 

  49. Kurbegovic S, Juhl K, Chen H, Qu C, Ding B, Leth JM, Drzewiecki KT, Kjaer A, Cheng Z (2018) Molecular targeted nir-ii probe for image-guided brain tumor surgery. Bioconjug Chem 29:3833–3840. https://doi.org/10.1021/acs.bioconjchem.8b00669

    Article  CAS  Google Scholar 

  50. Antaris AL, Chen H, Diao S, Ma Z, Zhang Z, Zhu S, Wang J, Lozano AX, Fan Q, Chew L (2017) A high quantum yield molecule-protein complex fluorophore for near-infrared ii imaging. Nat Commun 8:15269. https://doi.org/10.1038/ncomms15269

    Article  CAS  Google Scholar 

  51. Shou K, Qu C, Sun Y, Chen H, Chen S, Zhang L, Xu H, Hong X, Yu A, Cheng Z (2017) Multifunctional biomedical imaging in physiological and pathological conditions using a nir-ii probe. Adv Funct Mater. https://doi.org/10.1002/adfm.201700995

    Article  Google Scholar 

  52. Zeng X, Xiao Y, Lin J, Li S, Zhou H, Nong J, Xu G, Wang H, Xu F, Wu J, Deng Z, Hong X (2018) Near-infrared II dye-protein complex for biomedical imaging and imaging-guided photothermal therapy. Adv Healthc Mater 7:e1800589. https://doi.org/10.1002/adhm.201800589

    Article  CAS  Google Scholar 

  53. Wang P, Wang X, Luo Q, Li Y, Lin X, Fan L, Zhang Y, Liu J, Liu X (2019) Fabrication of red blood cell-based multimodal theranostic probes for second near-infrared window fluorescence imaging-guided tumor surgery and photodynamic therapy. Theranostics 9:369–380. https://doi.org/10.7150/thno.29817

    Article  CAS  Google Scholar 

  54. Chen Q, Chen J, Yang Z, Zhang L, Dong Z, Liu Z (2018) NIR-II light activated photodynamic therapy with protein-capped gold nanoclusters. Nano Res 10:5657–5669. https://doi.org/10.1007/s12274-017-1917-4

    Article  CAS  Google Scholar 

  55. Vijayaraghavan P, Vankayala R, Chiang CS, Sung HW, Hwang KC (2015) Complete destruction of deep-tissue buried tumors via combination of gene silencing and gold nanoechinus-mediated photodynamic therapy. Biomaterials 62:13–23. https://doi.org/10.1016/j.biomaterials.2015.05.039

    Article  CAS  Google Scholar 

  56. Liu Z, Wang J, Qiu K, Liao X, Rees TW, Ji L, Chao H (2019) Fabrication of red blood cell membrane-camouflaged cu2-xse nanoparticles for phototherapy in the second near-infrared window. Chem Commun 55:6523–6526. https://doi.org/10.1039/c9cc03148k

    Article  CAS  Google Scholar 

  57. Yin W, Bao T, Zhang X, Gao Q, Yu J, Dong X, Yan L, Gu Z, Zhao Y (2018) Biodegradable MoOx nanoparticles with efficient near-infrared photothermal and photodynamic synergetic cancer therapy at the second biological window. Nanoscale 10:1517–1531. https://doi.org/10.1039/C7NR07927C

    Article  CAS  Google Scholar 

  58. Vijayaraghavan P, Liu C-H, Vankayala R, Chiang C-S, Hwang KC (2014) Designing multi-branched gold nanoechinus for NIR light activated dual modal photodynamic and photothermal therapy in the second biological window. Adv Mater 26:6689–6695. https://doi.org/10.1002/adma.201400703

    Article  CAS  Google Scholar 

  59. Hannon G, Lysaght J, Liptrott NJ, Prina-Mello A (2019) Immunotoxicity considerations for next generation cancer nanomedicines. Adv Sci 6:1900133. https://doi.org/10.1002/advs.201900133

    Article  CAS  Google Scholar 

  60. Bian H, Ma D, Zhang X, Xin K, Yang Y, Peng X, Xiao Y (2021) Tailored engineering of novel xanthonium polymethine dyes for synergetic pdt and ptt triggered by 1064 nm laser toward deep-seated tumors. Small 17:e2100398. https://doi.org/10.1002/smll.202100398

    Article  CAS  Google Scholar 

  61. Wen K, Tan H, Peng Q, Chen H, Ma H, Wang L, Peng A, Shi Q, Cai X, Huang H (2021) Achieving efficient NIR-II type-I photosensitizers for photodynamic/photothermal therapy upon regulating chalcogen elements. Adv Mater 34:e2108146. https://doi.org/10.1002/adma.202108146

    Article  CAS  Google Scholar 

  62. Wang Q, Dai Y, Xu J, Cai J, Niu X, Zhang L, Chen R, Shen Q, Huang W, Fan Q (2019) All-in-one phototheranostics: single laser triggers NIR-II fluorescence/photoacoustic imaging guided photothermal/photodynamic/chemo combination therapy. Adv Funct Mater 29:1901480. https://doi.org/10.1002/adfm.201901480

    Article  CAS  Google Scholar 

  63. Chatterjee DK, Fong LS, Zhang Y (2008) Nanoparticles in photodynamic therapy: an emerging paradigm. Adv Drug Deliv Rev 60:1627–1637. https://doi.org/10.1016/j.addr.2008.08.003

    Article  CAS  Google Scholar 

  64. Krajczewski J, Rucinska K, Townley HE, Kudelski A (2019) Role of various nanoparticles in photodynamic therapy and detection methods of singlet oxygen. Photodiagn Photodyn Ther 26:162–178. https://doi.org/10.1016/j.pdpdt.2019.03.016

    Article  CAS  Google Scholar 

  65. Rasmussen JW, Martinez E, Louka P, Wingett DG (2010) Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin Drug Del 7:1063–1077. https://doi.org/10.1517/17425247.2010.502560

    Article  CAS  Google Scholar 

  66. Seidl C, Ungelenk J, Zittel E, Bergfeldt T, Sleeman JP, Schepers U, Feldmann C (2016) Tin tungstate nanoparticles: a photosensitizer for photodynamic tumor therapy. ACS Nano 10:3149–3157. https://doi.org/10.1021/acsnano.5b03060

    Article  CAS  Google Scholar 

  67. Liao F, Saitoh Y, Miwa N (2011) Anticancer effects of fullerene [C60] included in polyethylene glycol combined with visible light irradiation through ros generation and DNA fragmentation on fibrosarcoma cells with scarce cytotoxicity to normal fibroblasts. Oncol Res 19:203–216. https://doi.org/10.3727/096504011x12970940207805

    Article  Google Scholar 

  68. Ikeda A, Doi Y, Nishiguchi K, Kitamura K, Takeya T (2007) Induction of cell death by photodynamic therapy with water-soluble lipid-membrane-incorporated [60]fullerene. Org Biomol Chem 5:1158–1160. https://doi.org/10.1039/b701767g

    Article  CAS  Google Scholar 

  69. Hariharan R, Senthilkumar S, Suganthi A, Rajarajan M (2012) Synthesis and characterization of doxorubicin modified ZnO/PEG nanomaterials and its photodynamic action. J Photochem Photobiol B 116:56–65. https://doi.org/10.1016/j.jphotobiol.2012.08.008

    Article  CAS  Google Scholar 

  70. Liu J, Yu M, Zhou C, Yang S, Ning X, Zheng J (2013) Passive tumor targeting of renal-clearable luminescent gold nanoparticles: long tumor retention and fast normal tissue clearance. J Am Chem Soc 135:4978–4981. https://doi.org/10.1021/ja401612x

    Article  CAS  Google Scholar 

  71. Zhang XD, Wu D, Shen X, Liu P-X, Fan F-Y, Fan S-J (2013) In vivo renal clearance, biodistribution, toxicity of gold nanoclusters. Biomaterials 33:4628–4638. https://doi.org/10.1016/j.biomaterials.2012.03.020

    Article  CAS  Google Scholar 

  72. Zhang HL, Han WX, Cao XZ, Gao T, Jia RR, Liu MH, Zeng WB (2019) Gold nanoclusters as a near-infrared fluorometric nanothermometer for living cells. Microchim Acta 186:353. https://doi.org/10.1007/s00604-019-3460-3

    Article  CAS  Google Scholar 

  73. Han R, Zhao M, Wang Z, Liu H, Zhu S, Huang L, Wang Y, Wang L, Hong Y, Sha Y, Jiang Y (2019) Super-efficient in vivo two-photon photodynamic therapy with a gold nanocluster as a type i photosensitizer. ACS Nano 14:9532–9544. https://doi.org/10.1021/acsnano.9b05169

    Article  CAS  Google Scholar 

  74. Talavera C, Kamat PV (2018) Glutathione-capped gold nanoclusters: photoinduced energy transfer and singlet oxygen generation. J Chem Sci 130:143. https://doi.org/10.1007/s12039-018-1549-6

    Article  CAS  Google Scholar 

  75. Ho-Wu R, Yau S-H, Goodson III (2017) Efficient singlet oxygen generation in metal nanoclusters for two-photon photodynamic therapy applications. J Phys Chem B 121:10073–10080. https://doi.org/10.1021/acs.jpcb.7b09442

    Article  CAS  Google Scholar 

  76. Hwang KC, Nuthalapati K, Chiang C-S, Vankayala R, Kuo C-L (2015) Nucleus-targeting gold nanoclusters for simultaneous in vivo fluorescence imaging, gene delivery, and NIR-light activated photodynamic therapy. Adv Funct Mater 25:5934–5945. https://doi.org/10.1002/adfm.201570247

    Article  Google Scholar 

  77. Cui HD, Hu D-H, Zhang J-N, Gao G-H, Zheng C-F, Gong P, Xi X-H, Sheng Z-H, Cai L-T (2017) Theranostic gold cluster nanoassembly for simultaneous enhanced cancer imaging and photodynamic therapy. Chinese Chem Lett 28:1391–1398. https://doi.org/10.1016/j.cclet.2016.12.038

    Article  CAS  Google Scholar 

  78. Wang SH, Riedinger A, Li HB, Fu CH, Liu HY, Lin LL, Liu TL, Tan LF et al (2015) Plasmonic copper sulfide nanocrystals exhibiting near-infrared photothermal and photodynamic therapeutic effects. ACS Nano 9:1788–1800. https://doi.org/10.1021/nn506687t

    Article  CAS  Google Scholar 

  79. Ji M, Xu M, Zhang W, Yang Z, Huang L, Liu J, Zhang Y, Gu L, Yu Y, Hao W (2016) Structurally well-defined Au@Cu2-xS core-shell nanocrystals for improved cancer treatment based on enhanced photothermal efficiency. Adv Mater 28:3094–3101. https://doi.org/10.1002/adma.201503201

    Article  CAS  Google Scholar 

  80. Huang X, Deng G, Han Y, Yang G, Zou R, Zhang Z, Sun S, Hu J (2019) Right Cu2−xS@MnS core–shell nanoparticles as a Photo/H2O2 responsive platform for effective cancer theranostics. Adv Sci 6:1901461–1901472. https://doi.org/10.1002/advs.201901461

    Article  CAS  Google Scholar 

  81. Wang Y, Li Z, Hu Y, Liu J, Guo M, Wei H, Zheng S, Jiang T, Sun X, Ma Z, Sun Y, Besenbacher F, Chen C, Yu M (2020) Photothermal conversion-coordinated fenton-like and photocatalytic reactions of Cu2-xSe-Au Janus nanoparticles for tri-combination antitumor therapy. Biomaterials 255:120167. https://doi.org/10.1016/j.biomaterials.2020.120167

    Article  CAS  Google Scholar 

  82. Abbas MA, Kamat PV, Bang JH (2018) Thiolated gold nanoclusters for light energy conversion. ACS Energy Lett 3:840–854. https://doi.org/10.1021/acsenergylett.8b00070

    Article  CAS  Google Scholar 

  83. Saxena V, Sadoqi M, Shao J (2006) Polymeric nanoparticulate delivery system for indocyanine green: biodistribution in healthy mice. Int J Pharmact 308:200–204. https://doi.org/10.1016/j.ijpharm.2005.11.003

    Article  CAS  Google Scholar 

  84. Gomes AJ, Lunardi LO, Marchetti JM, Lunardi CN, Tedesco AC (2006) Indocyanine green nanoparticles useful for photomedicine. Photome Laser Surg 24:514–521. https://doi.org/10.1089/pho.2006.24.514

    Article  CAS  Google Scholar 

  85. Shen Y, Shuhendler AJ, Ye D, Xu JJ, Chen HY (2016) Two-photon excitation nanoparticles for photodynamic therapy. Chem Soc Rev 45:6725–6741. https://doi.org/10.1039/c6cs00442c

    Article  CAS  Google Scholar 

  86. Fan HY, Yu XH, Wang K, Yin YJ, Tang YJ, Tang YL, Liang XH (2019) Graphene quantum dots (GQDs)-based nanomaterials for improving photodynamic therapy in cancer treatment. Eur J Med Chem 182:111620. https://doi.org/10.1016/j.ejmech.2019.111620

    Article  CAS  Google Scholar 

  87. Dayal S, Burda C (2008) Semiconductor quantum dots as two-photon sensitizers. J Am Chem Soc 130:2890–2891. https://doi.org/10.1021/ja0781285

    Article  CAS  Google Scholar 

  88. Zhang PY, Huang HY, Huang JJ, Chen HM, Wang JQ, Qiu KQ (2015) Noncovalent ruthenium(II) complexes–single-walled carbon nanotube composites for bimodal photothermal and photodynamic therapy with near-infrared irradiation. ACS Appl Mater Inter 7:23278–23290. https://doi.org/10.1021/acsami.5b07510

    Article  CAS  Google Scholar 

  89. Shen X, He F, Wu J, Xu GQ, Yao SQ, Xu QH (2011) Enhanced two-photon singlet oxygen generation by photosensitizer-doped conjugated polymer nanoparticles. Langmuir 27:1739–1744. https://doi.org/10.1021/la104722q

    Article  CAS  Google Scholar 

  90. Dong H, Du SR, Zheng XY, Lyu GM, Sun LD, Li LD, Zhang PZ, Zhang C, Yan CH (2015) Lanthanide nanoparticles: from design toward bioimaging and therapy. Chem Rev 115:10725–10815. https://doi.org/10.1021/acs.chemrev.5b00091

    Article  CAS  Google Scholar 

  91. Sabri T, Pawelek PD, Capobianco JA (2018) Dual activity of rose bengal functionalized to albumin-coated lanthanide-doped upconverting nanoparticles: targeting and photodynamic therapy. ACS Appl Mater Inter 10:26947–26953. https://doi.org/10.1021/acsami.8b08919

    Article  CAS  Google Scholar 

  92. Feng L, He F, Dai Y, Liu B, Yang G, Gai S, Niu N, Lv R, Li C, Yang P (2017) A versatile near infrared light triggered dual-photosensitizer for synchronous bioimaging and photodynamic therapy. ACS Appl Mater Inter 9:12993–13008. https://doi.org/10.1021/acsami.7b00651

    Article  CAS  Google Scholar 

  93. Dong C, Liu Z, Wang S, Zheng B, Guo W, Yang W, Gong X, Wu X, Wang H, Chang J (2016) A protein-polymer bioconjugate-coated upconversion nanosystem for simultaneous tumor cell imaging, photodynamic therapy, and chemotherapy. ACS Appl Mater Inter 8:32688–32698. https://doi.org/10.1021/acsami.6b11803

    Article  CAS  Google Scholar 

  94. Cui S, Yin D, Chen Y, Di Y, Chen H, Ma Y, Achilefu S, Gu Y (2013) In vivo targeted deep-tissue photodynamic therapy based on near-infrared light triggered upconversion nanoconstruct. ACS Nano 7:676–688. https://doi.org/10.1021/nn304872n

    Article  CAS  Google Scholar 

  95. Meijer MS, Talens VS, Hilbers MF, Kieltyka RE, Brouwer AM, Natile MM, Bonnet S (2019) NIR-light-driven generation of reactive oxygen species using Ru(II)-decorated lipid-encapsulated upconverting nanoparticles. Langmuir 35:12079–12090. https://doi.org/10.1021/acs.langmuir.9b01318

    Article  CAS  Google Scholar 

  96. Thanasekaran P, Chu CH, Wang SB, Chen KY, Gao HD, Lee MM, Sun SS, Li JP, Chen JY, Chen JK, Chang YH, Lee HM (2019) Lipid-wrapped upconversion nanoconstruct/photosensitizer complex for near-infrared light-mediated photodynamic therapy. ACS Appl Mater Inter 11:84–95. https://doi.org/10.1021/acsami.8b07760

    Article  CAS  Google Scholar 

  97. Zhang S, Lv H, Zhao J, Cheng M, Sun S (2019) Synthesis of porphyrin-conjugated silica-coated Au nanorods for synergistic photothermal therapy and photodynamic therapy of tumor. Nanotechnology 30:265102. https://doi.org/10.1088/1361-6528/ab0bd1

    Article  CAS  Google Scholar 

  98. Sun X, Dong B, Xu H, Xu S, Zhang X, Lin Y, Xu L, Bai X, Zhang S, Song H (2017) Amphiphilic silane modified multifunctional nanoparticles for magnetically targeted photodynamic therapy. ACS Appl Mater Inter 9:11451–11460. https://doi.org/10.1021/acsami.7b00647

    Article  CAS  Google Scholar 

  99. Dimakatso RM, Blassan PG, Abrahamse H (2019) Enhancing breast cancer treatment using a combination of cannabidiol and gold nanoparticles for photodynamic therapy. Int J Mol Sci 20:4771–4785. https://doi.org/10.3390/ijms20194771

    Article  CAS  Google Scholar 

  100. Chouikrat R, Seve A, Vanderesse R, Benachour H, Barberi-Heyob M, Richeter S, Raehm L, Durand J-O, Verelst M, Frochot C (2012) Non polymeric nanoparticles for photodynamic therapy applications: recent developments. Curr Med Chem 19:781–792. https://doi.org/10.2174/092986712799034897

    Article  CAS  Google Scholar 

  101. Kadhim A, McKenzie LK, Bryant HE, Twyman LJ (2019) Synthesis and aggregation of a porphyrin-cored hyperbranched polyglycidol and its application as a macromolecular photosensitizer for photodynamic therapy. Mol Pharm 16:1132–1139. https://doi.org/10.1021/acs.molpharmaceut.8b01119

    Article  CAS  Google Scholar 

  102. Hou W, Xia F, Alves CS, Qian X, Yang Y, Cui D (2016) MMP2-targeting and redox-responsive pegylated chlorin e6 nanoparticles for cancer near-infrared imaging and photodynamic therapy. ACS Appl Mater Inter 8:1447–1457. https://doi.org/10.1021/acsami.5b10772

    Article  CAS  Google Scholar 

  103. Cheng L, Wang C, Feng L, Yang K, Liu Z (2014) Functional nanomaterials for phototherapies of cancer. Chem Rev 114:10869–10939. https://doi.org/10.1021/cr400532z

    Article  CAS  Google Scholar 

  104. Wang S, Yu G, Yang W, Wang Z, Jacobson O, Tian R, Deng H, Lin L, Chen X (2021) Photodynamic-chemodynamic cascade reactions for efficient drug delivery and enhanced combination therapy. Adv Sci 8:2002927. https://doi.org/10.1002/advs.202002927

    Article  CAS  Google Scholar 

  105. Paszko E, Ehrhardt C, Senge MO, Kelleher DP, Reynolds JV (2011) Nanodrug applications in photodynamic therapy. Photodiagn Photodyn 8:14–29. https://doi.org/10.1016/j.pdpdt.2010.12.001

    Article  CAS  Google Scholar 

  106. Ormond F, Harold S (2013) Dye sensitizers for photodynamic therapy. Materials 6:817–840. https://doi.org/10.3390/ma6030817

    Article  CAS  Google Scholar 

  107. Derosa MC, Crutchley RJ (2002) Photosensitized singlet oxygen and its applications. Coord Chem Rev 233:351–371. https://doi.org/10.1016/S0010-8545(02)00034-6

    Article  Google Scholar 

  108. Zhang C, Gao F, Wu W, Qiu WX, Zhang L, Li R, Zhuang ZN, Yu W, Cheng H, Zhang XZ (2019) Enzyme-driven membrane-targeted chimeric peptide for enhanced tumor photodynamic immunotherapy. ACS Nano 13:11249–11262. https://doi.org/10.1021/acsnano.9b04315

    Article  CAS  Google Scholar 

  109. Zhang S, Li Q, Yang N, Shi Y, Ge W, Wang W, Huang W, Song X, Dong X (2019) Phase-change materials based nanoparticles for controlled hypoxia modulation and enhanced phototherapy. Adv Funct Mater 29:1906805. https://doi.org/10.1002/adfm.201906805

    Article  CAS  Google Scholar 

  110. Wang Y, Luo S, Wu Y, Tang P, Liu J, Liu Z, Shen S, Ren H, Wu D (2020) Highly penetrable and on-demand oxygen release with tumor activity composite nanosystem for photothermal/photodynamic synergetic therapy. ACS Nano 14:17046–17062. https://doi.org/10.1021/acsnano.0c06415

    Article  CAS  Google Scholar 

  111. Ediriwickrema A, Saltzman WM (2015) Nanotherapy for cancer: targeting and multifunctionality in the future of cancer therapies. Acs Bio Sci Eng 1:64–78. https://doi.org/10.1021/ab500084g

    Article  CAS  Google Scholar 

  112. Teresa Piccolo M, Menale C, Crispi S (2015) Combined anticancer therapies: an overview of the latest applications. Anti Cancer Agent Med Chem 15:408–422. https://doi.org/10.2174/1871520615666150113123039

    Article  CAS  Google Scholar 

  113. Zhang C, Wu J, Liu W, Zheng X, Zhang W, Lee C-S, Wang P (2020) Hypocrellin-based multifunctional phototheranostic agent for NIR-triggered targeted chemo/photodynamic/photothermal synergistic therapy against glioblastoma. ACS Appl Bio Mater 3:3817–3826. https://doi.org/10.1021/acsabm.0c00386

    Article  CAS  Google Scholar 

  114. Ren C, Liu H, Lv F, Zhao W, Gao S, Yang X, Jin Y, Tan Y, Zhang J, Liang XJ, Li Z (2020) Prodrug-based nanoreactors with tumor-specific in situ activation for multisynergistic cancer therapy. ACS Appl Mater Inter 12:34667–34677. https://doi.org/10.1021/acsami.0c09489

    Article  CAS  Google Scholar 

  115. Hu C, Cai L, Liu S, Liu Y, Zhou Y, Pang M (2020) Copper-doped nanoscale covalent organic polymer for augmented photo/chemodynamic synergistic therapy and immunotherapy. Bioconjug Chem 31:1661–1670. https://doi.org/10.1021/acs.bioconjchem.0c00209

    Article  CAS  Google Scholar 

  116. Wang Y, Gong N, Li Y, Lu Q, Li J (2019) Atomic-level nanorings (A-NRs) therapeutic agent for photoacoustic imaging and photothermal/photodynamic therapy of cancer. J Am Chem Soc 142:1735–1739. https://doi.org/10.1021/jacs.9b115S3

    Article  Google Scholar 

  117. Chen G, Roy I, Yang C, Prasad PN (2016) Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chem Rev 116:2826–2885. https://doi.org/10.1021/acs.chemrev.5b00148

    Article  CAS  Google Scholar 

  118. Lan G, Ni K, Xu Z, Veroneau SS, Song Y, Lin W (2018) A nanoscale metal-organic framework overcomes hypoxia for photodynamic therapy primed cancer immunotherapy. J Am Chem Soc 140:5670–5673. https://doi.org/10.1021/jacs.8b01072

    Article  CAS  Google Scholar 

  119. Shao Y, Liu B, Di Z, Zhang G, Sun LD, Li L, Yan CH (2020) Engineering of upconverted metal-organic frameworks for near-infrared light-triggered combinational photodynamic/chemo-/immunotherapy against hypoxic tumors. J Am Chem Soc 142:3939–3946. https://doi.org/10.1021/jacs.9b12788

    Article  CAS  Google Scholar 

  120. Liu G, Zou J, Tang Q, Yang X, Zhang Y, Zhang Q, Huang W, Chen P, Shao J, Dong X (2017) Surface modified Ti3C2 mxene nanosheets for tumor targeting photothermal/photodynamic/chemo synergistic therapy. ACS Appl Mater Inter 9:40077–40086. https://doi.org/10.1021/acsami.7b13421

    Article  CAS  Google Scholar 

  121. Sun S, Chen J, Jiang K, Tang Z, Wang Y, Li Z, Liu C, Wu A, Lin H (2019) Ce6-modified carbon dots for multimodal-imaging-guided and single-NIR-laser-triggered photothermal/photodynamic synergistic cancer therapy by reduced irradiation power. ACS Appl Mater Inter 11:5791–5803. https://doi.org/10.1021/acsami.8b19042

    Article  CAS  Google Scholar 

  122. Lv R, Wang YX, Liu J, Feng M, Yang F, Jiang X, Tian J (2019) When the semiconductor utilized as the NIR laser-responsive photodynamic photothermal theranostic agent integrated with upconversion nanoparticles. ACS Biomater Sci Eng 5:3100–3110. https://doi.org/10.1021/acsbiomaterials.9b00438

    Article  CAS  Google Scholar 

  123. Sun Q, He F, Sun C, Wang X, Li C, Xu J, Yang D, Bi H, Gai S, Yang P (2018) Honeycomb-satellite structured pH/H2O2-responsive degradable nanoplatform for efficient photodynamic therapy and multimodal imaging. ACS Appl Mater Inter 10:33901–33912. https://doi.org/10.1021/acsami.8b10207

    Article  CAS  Google Scholar 

  124. Xiang HJ, Xue FF, Yi T, Tham HP, Liu JG, Zhao YL (2018) Cu2-xS Nanocrystals cross linked with Chlorin e6-functionalized polyethylenimine for synergistic photodynamic and photothermal therapy of cancer. ACS Appl Mater Inter 10:16344–16351. https://doi.org/10.1021/acsami.8b04779

    Article  CAS  Google Scholar 

  125. Wen KK, Wu LF, Wu XF, Lu Y, Duan T, Ma H, Peng AD, Shi QQ, Huang H (2020) Precisely tuning photothermal and photodynamic effects of polymeric nanoparticles by controlled copolymerization. Angew Chem Int Ed 59:12756–21276. https://doi.org/10.1002/anie.202004181

    Article  CAS  Google Scholar 

  126. Li Q, Hong L, Li H, Liu C (2017) Graphene oxide-fullerene c60 (GO-C60) hybrid for photodynamic and photothermal therapy triggered by near-infrared light. Biosens Bioelectron 89:477–482. https://doi.org/10.1016/j.bios.2016.03.072

    Article  CAS  Google Scholar 

  127. Li P, Liu L, Lu Q, Yang S, Yang L, Cheng Y, Wang Y, Wang S, Song Y, Tan F, Li N (2019) Ultrasmall MoS2 nanodots-doped biodegradable SiO2 nanoparticles for clearable FL/CT/MSOT imaging-guided PTT/PDT combination tumor therapy. ACS Appl Mater Inter 11:5771–5781. https://doi.org/10.1021/acsami.8b18924

    Article  CAS  Google Scholar 

  128. Zhou Y, Ye H, Chen Y, Zhu R, Yin L (2018) Photoresponsive drug/gene delivery systems. Biomacromol 19:1840–1857. https://doi.org/10.1021/acs.biomac.8b00422

    Article  CAS  Google Scholar 

  129. Chen J, Wen K, Chen H, Jiang S, Wu X, Lv L, Peng A, Zhang S, Huang H (2020) Achieving high-performance photothermal and photodynamic effects upon combining D-A structure and nonplanar conformation. Small 16:e2000909. https://doi.org/10.1002/smll.202000909

    Article  CAS  Google Scholar 

  130. Wen K, Xu X, Chen J, Lv L, Wu L, Hu Y, Wu X, Liu G, Peng A, Huang H (2019) Triplet tellurophene-based semiconducting polymer nanoparticles for near-infrared-mediated cancer theranostics. ACS Appl Mater Inter 11:17884–17893. https://doi.org/10.1021/acsami.9b05196

    Article  CAS  Google Scholar 

  131. Chen L, Chen C, Chen W, Li K, Chen X, Tang X, Xie G, Luo X, Wang X, Liang H, Yu S (2018) Biodegradable black phosphorus nanosheets mediate specific delivery of hTERT siRNA for synergistic cancer therapy. ACS Appl Mater Inter 10:21137–21148. https://doi.org/10.1021/acsami.8b04807

    Article  CAS  Google Scholar 

  132. Jin Y, Wang H, Li X, Zhu H, Sun D, Sun X, Liu H, Zhang Z, Cao L, Gao C, Wang H, Liang XJ, Zhang J, Yang X (2020) Multifunctional DNA polymer-assisted upconversion therapeutic nanoplatform for enhanced photodynamic therapy. ACS Appl Mater Inter 12:26832–26841. https://doi.org/10.1021/acsami.0c03274

    Article  CAS  Google Scholar 

  133. Kim HY, Kang M, Choo YW, Go SH, Kwon SP, Song SY, Sohn HS, Hong J, Kim BS (2019) Immunomodulatory lipocomplex functionalized with photosensitizer-embedded cancer cell membrane inhibits tumor growth and metastasis. Nano Lett 19:5185–5193. https://doi.org/10.1021/acs.nanolett.9b01571

    Article  CAS  Google Scholar 

  134. Zhen Z, Tang W, Wang M, Zhou S, Wang H, Wu Z, Hao Z, Li Z, Liu L, Xie J (2017) Protein nanocage mediated fibroblast-activation protein targeted photoimmunotherapy to enhance cytotoxic T cell infiltration and tumor control. Nano Lett 17:862–869. https://doi.org/10.1021/acs.nanolett.6b04150

    Article  CAS  Google Scholar 

  135. Yang G, Xu L, Xu J, Zhang R, Song G, Chao Y, Feng L, Han F, Dong Z, Li B, Liu Z (2018) Smart nanoreactors for pH-responsive tumor homing, mitochondria-targeting, and enhanced photodynamic-immunotherapy of cancer. Nano Lett 18:2475–2484. https://doi.org/10.1021/acs.nanolett.8b00040

    Article  CAS  Google Scholar 

  136. Zeng Z, Zhang C, Li J, Cui D, Jiang Y, Pu K (2021) Activatable polymer nanoenzymes for photodynamic immunometabolic cancer therapy. Adv Mater 33:2007247. https://doi.org/10.1002/adma.202007247

    Article  CAS  Google Scholar 

  137. Gao A, Chen B, Gao J, Zhou F, Saeed M, Hou B, Li Y, Yu H (2020) Sheddable prodrug vesicles combating adaptive immune resistance for improved photodynamic immunotherapy of cancer. Nano Lett 20:353–362. https://doi.org/10.1021/acs.nanolett.9b04012

    Article  CAS  Google Scholar 

  138. Lu K, He C, Lin W (2015) A chlorin-based nanoscale metal-organic framework for photodynamic therapy of colon cancers. J Am Chem Soc 137:7600–7603. https://doi.org/10.1021/jacs.5b04069

    Article  CAS  Google Scholar 

  139. Park J, Feng D, Yuan S, Zhou HC (2015) Photochromic metal-organic frameworks: reversible control of singlet oxygen generation. Angew Chem 127:440–445. https://doi.org/10.1002/ange.201408862

    Article  Google Scholar 

  140. Liu J, Yang Y, Zhu W, Yi X, Dong Z, Xu X, Chen M, Yang K, Lu G, Jiang L (2016) Nanoscale metal-organic frameworks for combined photodynamic & radiation therapy in cancer treatment. Biomaterials 97:1–9. https://doi.org/10.1016/j.biomaterials.2016.04.034

    Article  CAS  Google Scholar 

  141. Nathan WO, Olaf DF, Michael O, Omar MY (2005) Reticular chemistry: occurrence and taxonomy of nets and grammar for the design of frameworks. Acc Chem Res 38:176–182. https://doi.org/10.1021/ar020022l

    Article  CAS  Google Scholar 

  142. Batten SR, Champness NR, Chen XM, Garcia-Martinez J, Kitagawa S, Öhrström L, O’Keeffe M, Suh MP, Reedijk J (2012) Coordination polymers, metal-organic frameworks and the need for terminology guidelines. Cryst Eng Comm 14:3001–3004. https://doi.org/10.1039/C2CE06488J

    Article  CAS  Google Scholar 

  143. Allendorf MD, Stavila V (2014) Crystal engineering, structure–function relationships, and the future of metal–organic frameworks. Cryst Eng Comm 17:229–246. https://doi.org/10.1039/C4CE01693A

    Article  Google Scholar 

  144. Horcajada P, Gref R, Baati T, Allan PK, Maurin G, Couvreur P, Férey G, Morris RE, Serre C (2012) Metal–organic frameworks in biomedicine. Chem Rev 112:1232–1268. https://doi.org/10.1021/cr200256v

    Article  CAS  Google Scholar 

  145. Yoon SM, Warren SC, Grzybowski BA (2014) Storage of electrical information in metal-organic-framework memristors. Angewandte Chemie 126(17):4526–4530. https://doi.org/10.1002/ange.201309642

    Article  Google Scholar 

  146. Della Rocca J, Liu D, Lin W (2011) Nanoscale metal–organic frameworks for biomedical imaging and drug delivery. Accounts Chem Res 44:957–968. https://doi.org/10.1021/ar200028a

    Article  CAS  Google Scholar 

  147. Li S, Tan L, Meng X (2020) Nanoscale metal-organic frameworks: synthesis, biocompatibility, imaging applications, and thermal and dynamic therapy of tumors. Adv Funct Mater 30:1908924. https://doi.org/10.1002/adfm.201908924

    Article  CAS  Google Scholar 

  148. He C, Liu D, Lin W (2015) Nanomedicine applications of hybrid nanomaterials built from metal-ligand coordination bonds: nanoscale metal-organic frameworks and nanoscale coordination polymers. Chem Rev 115:11079–11108. https://doi.org/10.1021/acs.chemrev.5b00125

    Article  CAS  Google Scholar 

  149. Kan JL, Jiang Y, Xue A, Yu Y-H, Wang Q, Zhou Y, Dong Y-B (2018) Surface decorated porphyrinic nanoscale metal–organic framework for photodynamic therapy. Inorg Chem 57:5420–5428. https://doi.org/10.1021/acs.inorgchem.8b00384

    Article  CAS  Google Scholar 

  150. Park J, Jiang Q, Feng D, Mao L, Zhou HC (2016) Size-controlled synthesis of porphyrinic metal–organic framework and functionalization for targeted photodynamic therapy. J Am Chem Soc 138:3518–3525. https://doi.org/10.1021/jacs.6b00007

    Article  CAS  Google Scholar 

  151. Chen J, Lin S, Zhao D, Guan L, Hu Y, Wang Y, Lin K, Zhu Y (2020) Palladium nanocrystals-engineered metal-organic frameworks for enhanced tumor inhibition by synergistic hydrogen/photodynamic therapy. Adv Funct Mater 31:2006853. https://doi.org/10.1002/adfm.202006853

    Article  CAS  Google Scholar 

  152. Liu J, Huang J, Zhang L, Lei J (2021) Multifunctional metal-organic framework heterostructures for enhanced cancer therapy. Chem Soc Rev 50:1188–1218. https://doi.org/10.1039/d0cs00178c

    Article  CAS  Google Scholar 

  153. Park J, Jiang Q, Feng D, Mao L, Zhou HC (2016) Size-controlled synthesis of porphyrinic metal-organic framework and functionalization for targeted photodynamic therapy. J Am Chem Soc 138:3518–3525. https://doi.org/10.1021/jacs.6b00007

    Article  CAS  Google Scholar 

  154. Zhang Y, Wang F, Liu C, Wang Z, Kang L, Huang Y, Dong K, Ren J, Qu X (2018) Nanozyme decorated metal-organic frameworks for enhanced photodynamic therapy. ACS Nano 12:651–661. https://doi.org/10.1021/acsnano.7b07746

    Article  CAS  Google Scholar 

  155. Lan G, Ni K, Veroneau SS, Feng X, Nash GT, Luo T, Xu Z, Lin W (2019) Titanium-based nanoscale metal-organic framework for type I photodynamic therapy. J Am Chem Soc 141:4204–4208. https://doi.org/10.1021/jacs.8b13804

    Article  CAS  Google Scholar 

  156. Wang Y, Wu W, Liu J, Manghnani PN, Hu F, Ma D, Teh C, Wang B, Liu B (2019) Cancer-cell-activated photodynamic therapy assisted by Cu(II)-based metal-organic framework. ACS Nano 13:6879–6890. https://doi.org/10.1021/acsnano.9b01665

    Article  CAS  Google Scholar 

  157. Wang Y, Wu W, Mao D, Teh C, Wang B, Liu B (2020) Metal-organic framework assisted and tumor microenvironment modulated synergistic image-guided photo-chemo therapy. Adv Funct Mater. https://doi.org/10.1002/adfm.202002431

    Article  Google Scholar 

  158. Lu K, He C, Guo N, Chan C, Ni K, Weichselbaum RR, Lin W (2016) Chlorin-based nanoscale metal-organic framework systemically rejects colorectal cancers via synergistic photodynamic therapy and checkpoint blockade immunotherapy. J Am Chem Soc 138:12502–12510. https://doi.org/10.1021/jacs.6b06663

    Article  CAS  Google Scholar 

  159. Liu C, Xing J, Akakuru OU, Luo L, Sun S, Zou R, Yu Z, Fang Q, Wu A (2019) Nanozymes-engineered metal-organic frameworks for catalytic cascades-enhanced synergistic cancer therapy. Nano Lett 19:5674–5682. https://doi.org/10.1021/acs.nanolett.9b02253

    Article  CAS  Google Scholar 

  160. Zhao X, Zhang Z, Cai X, Ding B, Sun C, Liu G, Hu C, Shao S, Pang M (2019) Post-synthetic ligand exchange of metal-organic framework for photodynamic therapy. ACS Appl Mater Inter 11:7884–7892. https://doi.org/10.1021/acsami.9b00740

    Article  CAS  Google Scholar 

  161. Liu J, Zhang L, Lei J, Shen H, Ju H (2017) Multifunctional metal-organic framework nanoprobe for cathepsin b-activated cancer cell imaging and chemo-photodynamic therapy. ACS Appl Mater Inter 9:2150–2158. https://doi.org/10.1021/acsami.6b14446

    Article  CAS  Google Scholar 

  162. Guan Q, Zhou L-L, Li Y-A, Dong Y-B (2019) A nanoscale metal–organic framework for combined photodynamic and starvation therapy in treating breast tumors. Chem Commun 55:14898–14901. https://doi.org/10.1039/c9cc07510k

    Article  CAS  Google Scholar 

  163. Zhang Y, Fu H, Chen S, Liu B, Sun W, Gao H (2020) Construction of an Iridium(iii)-complex-loaded mof nanoplatform mediated with a dual-responsive polycationic polymer for photodynamic therapy and cell imaging. Chem Commun 56:762–765. https://doi.org/10.1039/c9cc09357e

    Article  CAS  Google Scholar 

  164. Li SY, Cheng H, Xie BR, Qiu WX, Zeng JY, Li CX, Wan SS, Zhang L, Liu WL, Zhang XZ (2017) Cancer cell membrane camouflaged cascade bioreactor for cancer targeted starvation and photodynamic therapy. ACS Nano 11:7006–7018. https://doi.org/10.1021/acsnano.7b02533

    Article  CAS  Google Scholar 

  165. Zhang X, Li G, Wu D, Li X, Hu N, Chen J, Chen G, Wu Y (2019) Recent progress in the design fabrication of metal-organic frameworks-based nanozymes and their applications to sensing and cancer therapy. Biosens Bioelectron 137:178–198. https://doi.org/10.1016/j.bios.2019.04.061

    Article  CAS  Google Scholar 

  166. Hu X, Lu Y, Shi X, Yao T, Dong C, Shi S (2019) Integrating in situ formation of nanozymes with mesoporous polydopamine for combined chemo, photothermal and hypoxia-overcoming photodynamic therapy. Chem Commun 55:14785–14788. https://doi.org/10.1039/c9cc07125c

    Article  CAS  Google Scholar 

  167. Lu J, Yang L, Zhang W, Li P, Gao X, Zhang W, Wang H, Tang BZ (2019) Photodynamic therapy for hypoxic solid tumors via Mn-MOF as a photosensitizer. Chem Commun 55:10792–10795. https://doi.org/10.1039/c9cc05107d

    Article  CAS  Google Scholar 

  168. Ni K, Aung T, Li S, Fatuzzo N, Liang X, Lin W (2019) Nanoscale metal-organic framework mediates radical therapy to enhance cancer immunotherapy. Chem 5:1892–1913. https://doi.org/10.1016/j.chempr.2019.05.013

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 81602846), Taishan Scholar Project of Shandong Province (No. tsqn201812159) and Natural Science Foundation of Shandong Province(ZR2020QH270,ZR2020QH166)and Projects of Medical and Health Technology Development Program in Shandong Province (2018WS471).

Author information

Authors and Affiliations

Authors

Contributions

ZH contributed to writing—original draft preparation and funding acquisition. HW contributed to writing—reviewing and editing, data curation, and funding acquisition. HJ contributed to methodology and software. XP contributed to visualization, investigation, and funding acquisition. JP contributed to supervision and funding acquisition.

Corresponding authors

Correspondence to Pengfei Xu or Pei Jiang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Han, W., Han, J. et al. Review of novel materials as photosensitizers towards the bottleneck of photodynamic therapy. J Mater Sci 57, 14620–14654 (2022). https://doi.org/10.1007/s10853-022-07529-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07529-6

Navigation