Skip to main content
Log in

Modulation of the carboxamidine redox potential through photoinduced spiropyran or fulgimide isomerisation

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Carboxamidines functionalized with either a spiropyran or fulgimide photoswitch were prepared on multigram scales. The thermal, electrochemical, and photochemical ring isomerizations of these compounds were studied and the results compared with related systems. The photochemical isomerisations were found to be reversible and could be followed by 1H NMR and UV-vis spectroscopy. The spiropyran/merocyanine couple was thermally active and an activation enthalpy of 116 kJ mol−1 was measured for ring-opening. These measurements yielded an enthalpy difference of 25 kJ mol−1 between the open and closed states which is consistent with DFT calculations. DFT calculations predicted a charge transfer to the carboxamidine group upon ring closure in the fulgimide and a charge transfer from the carboxamidine group upon switching the spiropyran to the merocyanine form. This was confirmed experimentally by monitoring the change in the oxidation potential assigned to the carboxamidine group. The potential of these molecules to therefore act as a new class of photoresponsive ligands that can modulate the ligand field of a complex is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Zheng, X. Mei, Z. Lin, Y. Zhao, W. Lv and Q. Ling, Strong CIE activity, multi-stimuli-responsive fluorescence and data storage application of new diphenyl maleimide derivatives, J. Mater. Chem. C, 2015, 3, 10242–10248.

    Article  CAS  Google Scholar 

  2. L. Hu, Y. Duan, Z. Xu, J. Yuan, Y. Dong and T. Han, Stimuli-responsive fluorophores with aggregation-induced emission: implication for dual-channel optical data storage, J. Mater. Chem. C, 2016, 4, 5334–5341.

    Article  CAS  Google Scholar 

  3. H. Gao, Y. Bi, J. Chen, L. Peng, K. Wen, P. Ji, W. Ren, X. Li, N. Zhang, J. Gao, Z. Chai and Y. Hu, Near-Infrared Light-Triggered Switchable Nanoparticles for Targeted Chemo/ Photothermal Cancer Therapy, ACS Appl. Mater. Interfaces, 2016, 8, 15103–15112.

    Article  CAS  PubMed  Google Scholar 

  4. X. An, A. Zhu, H. Luo, H. Ke, H. Chen and Y. Zhao, Rational Design of Multi-Stimuli-Responsive Nanoparticles for Precise Cancer Therapy, ACS Nano, 2016, 10, 5947–5958.

    Article  CAS  PubMed  Google Scholar 

  5. L. Zhang and L. Chen, Fluorescence Probe Based on Hybrid Mesoporous Silica/Quantum Dot/Molecularly Imprinted Polymer for Detection of Tetracycline, ACS Appl. Mater. Interfaces, 2016, 8, 16248–16256.

    Article  CAS  PubMed  Google Scholar 

  6. A. M. Lifschitz, R. M. Young, J. Mendez-Arroyo, C. M. McGuirk, M. R. Wasielewski and C. A. Mirkin, Cooperative Electronic and Structural Regulation in a Bioinspired Allosteric Photoredox Catalyst, Inorg. Chem., 2016, 55, 8301–8308.

    Article  CAS  PubMed  Google Scholar 

  7. S. Sun, X. Yu, Y. Guo, L. Chen, X. Wang and Z. Jiang, Temperature-Responsive Polyoxometalate Catalysts for DBT Desulfurization in One-Pot Oxidation Combined with Extraction, Catal. Surv. Asia, 2016, 20, 98–108.

    Article  CAS  Google Scholar 

  8. Y. Nakabayashi and Y. Nosaka, OH Radical Formation at Distinct Faces of Rutile TiO2 Crystal in the Procedure of Photoelectrochemical Water Oxidation, J. Phys. Chem. C, 2013, 117, 23832–23839.

    Article  CAS  Google Scholar 

  9. Á. Valdés, Z.-W. Qu, G.-J. Kroes, J. Rossmeisl and J. K. Norskov, Oxidation and Photo-Oxidation of Water on TiO2 Surface, J. Phys. Chem. C, 2008, 112, 9872–9879.

    Article  CAS  Google Scholar 

  10. Z. Ding, G. Q. Lu and P. F. Greenfield, Role of the Crystallite Phase of TiO2 in Heterogeneous Photocatalysis for Phenol Oxidation in Water, J. Phys. Chem. B, 2000, 104, 4815–4820.

    Article  CAS  Google Scholar 

  11. E. Krausz and J. Ferguson, in Progress in Inorganic Chemistry, ed. S.J. Lippard, John Wiley & Sons, Inc., 1989, pp. 293–390.

  12. B. M. Neilson and C. W. Bielawski, Illuminating Photoswitchable Catalysis, ACS Catal., 2013, 3, 1874–1885.

    Article  CAS  Google Scholar 

  13. M. Vlatkovic, B. S. L. Collins and B. L. Feringa, Dynamic Responsive Systems for Catalytic Function, Chem. - Eur. J., 2016, 22, 17080–17111.

    Article  CAS  PubMed  Google Scholar 

  14. D. Bléger and S. Hecht, Visible-Light-Activated Molecular Switches, Angew. Chem., Int. Ed., 2015, 54, 11338–11349.

    Article  CAS  Google Scholar 

  15. B. M. Neilson, V. M. Lynch and C. W. Bielawski, Photoswitchable N-Heterocyclic Carbenes: Using Light to Modulate Electron-Donating Properties, Angew. Chem., Int. Ed., 2011, 50, 10322–10326.

    Article  CAS  Google Scholar 

  16. B. M. Neilson and C. W. Bielawski, Photoswitchable Metal-Mediated Catalysis: Remotely Tuned Alkene and Alkyne Hydroborations, Organometallics, 2013, 32, 3121–3128.

    Article  CAS  Google Scholar 

  17. B. M. Neilson and C. W. Bielawski, Photoswitchable Organocatalysis: Using Light To Modulate the Catalytic Activities of N-Heterocyclic Carbenes, J. Am. Chem. Soc., 2012, 134, 12693–12699.

    Article  CAS  PubMed  Google Scholar 

  18. M. M. Paquette, B. O. Patrick and N. L. Frank, Determining the Magnitude and Direction of Photoinduced Ligand Field Switching in Photochromic Metal-Organic Complexes: Molybdenum-Tetracarbonyl Spirooxazine Complexes, J. Am. Chem. Soc., 2011, 133, 10081–10093.

    Article  CAS  PubMed  Google Scholar 

  19. R. A. Kopelman, S. M. Snyder and N. L. Frank, Tunable Photochromism of Spirooxazines via Metal Coordination, J. Am. Chem. Soc., 2003, 125, 13684–13685.

    Article  CAS  PubMed  Google Scholar 

  20. R. A. Kopelman, M. M. Paquette and N. L. Frank, Photoprocesses and magnetic behavior of photochromic transition metal indoline[ phenanthrolinospirooxazine] complexes: Tunable photochromic materials, Inorg. Chim. Acta, 2008, 361, 3570–3576.

    Article  CAS  Google Scholar 

  21. M. M. Paquette, R. A. Kopelman, E. Beitler and N. L. Frank, Incorporating optical bistability into a magnetically bistable system: a photochromic redox isomeric complex, Chem. Commun., 2009, 5424–5426.

    Google Scholar 

  22. M. Nihei, Y. Suzuki, N. Kimura, Y. Kera and H. Oshio, Bidirectional Photomagnetic Conversions in a SpinCrossover Complex with a Diarylethene Moiety, Chem. - Eur.J., 2013, 19, 6946–6949.

    Article  CAS  PubMed  Google Scholar 

  23. M. Milek, F. W. Heinemann and M. M. Khusniyarov, Spin Crossover Meets Diarylethenes: Efficient Photoswitching of Magnetic Properties in Solution at Room Temperature, Inorg. Chem., 2013, 52, 11585–11592.

    Article  CAS  PubMed  Google Scholar 

  24. C. Roux, J. Zarembowitch, B. Gallois, T. Granier and R. Claude, Toward Ligand-Driven Light-Induced Spin Changing. Influence of the Configuration of 4-Styrylpyridine (stpy) on the Magnetic Properties of FeII(stpy)4(NCS)2 Complexes. Crystal Structures of the SpinCrossover Species Fe(trans-stpy)4(NCS)2 and of the High- Spin Species Fe(cis-stpy)4(NCS)2, Inorg. Chem., 1994, 33, 2273–2279.

    Article  CAS  Google Scholar 

  25. F. T. Edelmann, in Advances in Organometallic Chemistry, ed. A.F. Hill and M.J. Fink, Academic Press, 2008, vol. 57, pp. 183–352.

    Article  CAS  Google Scholar 

  26. J. Barker and M. Kilner, The coordination chemistry of the amidine ligand, Coord. Chem. Rev., 1994, 133, 219–300.

    Article  CAS  Google Scholar 

  27. Y. Yokoyama, Fulgides for Memories and Switches, Chem. Rev., 2000, 100, 1717–1740.

    Article  CAS  PubMed  Google Scholar 

  28. G. Berkovic, V. Krongauz and V. Weiss, Spiropyrans and Spirooxazines for Memories and Switches, Chem. Rev., 2000, 100, 1741–1754.

    Article  CAS  PubMed  Google Scholar 

  29. P. H. M. Budzelaar, A. B. van Oort and A. G. Orpen, ß-Diiminato Complexes of VIII and TiII* - Formation and Structure of Stable Paramagnetic Dialkylmetal Compounds, Eur.J. Inorg. Chem., 1998, 1998, 1485–1494.

    Article  Google Scholar 

  30. Y. Liang, A. S. Dvornikov and P. M. Rentzepis, Photochemistry of photochromic 2-indolylfulgides with substituents at the 1'-position of the indolylmethylene moiety, J. Photochem. Photobiol., A, 2001, 146, 83–93.

    Article  CAS  Google Scholar 

  31. E. I. Balmond, B. K. Tautges, A. L. Faulkner, V. W. Or, B. M. Hodur, J. T. Shaw and A. Y. Louie, Comparative Evaluation of Substituent Effect on the Photochromic Properties of Spiropyrans and Spirooxazines, J. Org. Chem., 2016, 81, 8744–8758.

    Article  CAS  PubMed  Google Scholar 

  32. C. J. Roxburgh, P. G. Sammes and A. Abdullah, Steric and electronically biasing substituent effects on the Photoreversibility of novel, 3'-, 5'- and 3-substituted indolospirobenzopyrans. Thermal evaluation using 1H NMR spectroscopy and Overhauser enhancement studies, Dyes Pigm., 2009, 83, 31–50.

    Article  CAS  Google Scholar 

  33. H. Görner, Photochromism of nitrospiropyrans: effects of structure, solvent and temperature, Phys. Chem. Chem. Phys., 2001, 3, 416–423.

    Article  Google Scholar 

  34. A. K. Chibisov and H. Görner, Photochromism of spirobenzopyranindolines and spironaphthopyranindolines, Phys. Chem. Chem. Phys., 2001, 3, 424–431.

    Article  CAS  Google Scholar 

  35. Y. Sheng, J. Leszczynski, A. A. Garcia, R. Rosario, D. Gust and J. Springer, Comprehensive Theoretical Study of the Conversion Reactions of Spiropyrans: Substituent and Solvent Effects, J. Phys. Chem. B, 2004, 108, 16233–16243.

    Article  CAS  Google Scholar 

  36. G. Tomasello, M. J. Bearpark, M. A. Robb, G. Orlandi and M. Garavelli, Significance of a Zwitterionic State for Fulgide Photochromism: Implications for the Design of Mimics, Angew. Chem., Int. Ed., 2010, 49, 2913–2916.

    Article  CAS  Google Scholar 

  37. S. Uchida, S. Yamada, Y. Yokoyama and Y. Kurita, Steric Effects of Substituents on the Photochromism of Indolylfulgides, Bull. Chem. Soc. Jpn., 1995, 68, 1677–1682.

    Article  CAS  Google Scholar 

  38. S. Uchida, Y. Yokoyama, J. Kiji, T. Okano and H. Kitamura, Electronic Effects of Substituents on Indole Nitrogen on the Photochromic Properties of Indolylfulgides, Bull. Chem. Soc. Jpn., 1995, 68, 2961–2967.

    Article  CAS  Google Scholar 

  39. R. Chindam, H. M. Hoque, A. S. Ali, F. Z. Rafique and J. D. Gough, Theoretical assessment of indolylfulgimides and novel asymmetric di-indolylfulgimide photochromes, J. Photochem. Photobiol., A, 2014, 279, 38–46.

    Article  CAS  Google Scholar 

  40. Y. Liang, A. S. Dvornikov and P. M. Rentzepis, Synthesis of novel photochromic fluorescing 2-indolylfulgimides, Tetrahedron Lett., 1999, 40, 8067–8069.

    Article  CAS  Google Scholar 

  41. J. Andréasson, S. D. Straight, T. A. Moore, A. L. Moore and D. Gust, Molecular All-Photonic Encoder-Decoder, J. Am. Chem. Soc., 2008, 130, 11122–11128.

    Article  PubMed  CAS  Google Scholar 

  42. A. S. Dvornikov, Y. Liang, C. S. Cruse and P. M. Rentzepis, Spectroscopy and Kinetics of a Molecular Memory with Nondestructive Readout for Use in 2D and 3D Storage Systems, J. Phys. Chem. B, 2004, 108, 8652–8658.

    Article  CAS  Google Scholar 

  43. L. Li, F.-Q. Bai, J. Wang and H.-X. Zhang, Theoretical investigation on the spectroscopy prosperities of four isomers of an encoder molecule FGDTE, Dyes Pigm., 2014, 107, 108–117.

    Article  CAS  Google Scholar 

  44. Y. Liang, A. S. Dvornikov and P. M. Rentzepis, Synthesis of novel photochromic fluorescing 2-indolylfulgimides, Tetrahedron Lett., 1999, 40, 8067–8069.

    Article  CAS  Google Scholar 

  45. G. Naren, S. Li and J. Andréasson, One-Time Password Generation and Two-Factor Authentication Using Molecules and Light, ChemPhysChem, 2017, 1729–1729.

    Google Scholar 

  46. P. Remón, M. Bälter, S. Li, J. Andréasson and U. Pischel, An All-Photonic Molecule-Based D Flip-Flop, J. Am. Chem. Soc., 2011, 133, 20742–20745.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. A. Abdullah, T. G. Nevell, P. G. Sammes and C. J. Roxburgh, Unusual thermo(photo)chromic properties of some mononitro- and dinitro- substituted 3'-alkyl indolospirobenzopyrans, Dyes Pigm., 2015, 121, 57–72.

    Article  CAS  Google Scholar 

  48. N. Sivasankaran and K. Palaninathan, Photochromic switchable pendant indolyl fulgimide polypyrrole, Polym. Degrad. Stab., 2013, 98, 1852–1861.

    Article  CAS  Google Scholar 

  49. J. T. C. Wojtyk, A. Wasey, P. M. Kazmaier, S. Hoz and E. Buncel, Thermal Reversion Mechanism of N-Functionalized Merocyanines to Spiropyrans: A Solvatochromic, Solvatokinetic, and Semiempirical Study, J. Phys. Chem. A, 2000, 104, 9046–9055.

    Article  CAS  Google Scholar 

  50. A. K. Chibisov and H. Görner, Complexes of spiropyranderived merocyanines with metal ions: relaxation kinetics, photochemistry and solvent effects, Chem. Phys., 1998, 237, 425–442.

    Article  CAS  Google Scholar 

  51. M. Zanoni, S. Coleman, K. J. Fraser, R. Byrne, K. Wagner, S. Gambhir, D. L. Officer, G. G. Wallace and D. Diamond, Physicochemical study of spiropyran-terthiophene derivatives: photochemistry and thermodynamics, Phys. Chem. Chem. Phys., 2012, 14, 9112–9120.

    Article  CAS  PubMed  Google Scholar 

  52. Y. Shiraishi, K. Yamamoto, S. Sumiya and T. Hirai, Spiropyran as a reusable chemosensor for selective colorimetric detection of aromatic thiols, Phys. Chem. Chem. Phys., 2014, 16, 12137–12142.

    Article  CAS  PubMed  Google Scholar 

  53. B. Daoust and J. Lessard, Electrochemical behavior of amidine hydrochlorides and amidines, Can. J. Chem., 1995, 73, 362–374.

    Article  CAS  Google Scholar 

  54. H. E. Abdou, A. A. Mohamed and J. P. Fackler, Synthesis, Characterization, Luminescence, and Electrochemistry of New Tetranuclear Gold(I) Amidinate Clusters: Au4[PhNC (Ph)NPh]4, Au4[PhNC(CH3)NPh]4, and Au4[ArNC(H)NAr]4, J. Cluster Sci., 2007, 18, 630–641.

    Article  CAS  Google Scholar 

  55. M. A. Fox and J. R. Hurst, Electrochemically induced peri-cyclic reactions. A radical anionic cyclization, J. Am. Chem. Soc., 1984, 106, 7626–7627.

    Article  CAS  Google Scholar 

  56. O. Ivashenko, J. T. van Herpt, P. Rudolf, B. L. Feringa and W. R. Browne, Oxidative electrochemical aryl C-C coupling of spiropyrans, Chem. Commun., 2013, 49, 6737–6739.

    Article  CAS  Google Scholar 

  57. M. Campredon, G. Giusti, R. Guglielmetti, A. Samat, G. Gronchi, A. Alberti and M. Benaglia, Radical ions and germyloxyaminoxyls from nitrospiro[indoline-naphtho-pyrans]. A combined electrochemical and EPR study, J. Chem. Soc., Perkin Trans. 2, 1993, 2089–2094.

    Article  Google Scholar 

  58. G. Armendáriz-Vidales, E. Martínez-González, D. Hernández-Melo, J. Tiburcio and C. Frontana, Electrochemical Characterization of Spiropyran Structures, Procedia Chem., 2014, 12, 41–46.

    Article  CAS  Google Scholar 

  59. J. A. Mata, F. E. Hahn and E. Peris, Heterometallic complexes, tandem catalysis and catalytic cooperativity, Chem. Sci., 2014, 5, 1723–1732.

    Article  CAS  Google Scholar 

  60. T. Hirao, Conjugated systems composed of transition metals and redox-active n-conjugated ligands, Coord. Chem. Rev., 2002, 226, 81–91.

    Article  CAS  Google Scholar 

  61. A. M. Allgeier and C. A. Mirkin, Ligand Design for Electrochemically Controlling Stoichiometric and Catalytic Reactivity of Transition Metals, Angew. Chem., Int. Ed., 1998, 37, 894–908.

    Article  Google Scholar 

  62. V. Lyaskovskyy and B. de Bruin, Redox Non-Innocent Ligands: Versatile New Tools to Control Catalytic Reactions, ACS Catal., 2012, 2, 270–279.

    Article  CAS  Google Scholar 

  63. M. J. Preigh, M. T. Stauffer, F.-T. Lin and S. G. Weber, Anodic oxidation mechanism of a spiropyran, J. Chem. Soc., Faraday Trans., 1996, 92, 3991–3996.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for financial support from the Robert A. Welch Foundation (D-1838, USA), Texas Tech University and from the National Science Foundation (NMR instrument grant CHE-1048553). The authors would like to thank Dr Daniel Unruh and the Texas Tech University X-ray Facility for the crystallographic information discussed herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony F. Cozzolino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrews, M.C., Peng, P., Rajput, A. et al. Modulation of the carboxamidine redox potential through photoinduced spiropyran or fulgimide isomerisation. Photochem Photobiol Sci 17, 432–441 (2018). https://doi.org/10.1039/c7pp00347a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c7pp00347a

Navigation