Skip to main content

Advertisement

Log in

Dependence of the hydration status of bacterial light-harvesting complex 2 on polyol cosolventsf

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Low molecular weight (MW) polyols are organic osmolytes influencing protein structure and activity. We have intended to investigate the effects of low MW. polyols on the optical and the excited-state properties of the light-harvesting complex 2 (LH2) isolated from the photosynthetic bacterium Thermochromatium (Teh.) tepidum, a thermophile growing at ~50 °C. Steady state spectroscopy demonstrated that, on ncreasing glycerol or sorbitol fractions up to 60% (polyol/water, v/v), the visible absorption of carotenoids (Crts) remained unchanged, while the near infrared Qy absorption of bacteriochlorophyll a (BChl) at 800 nm (B800) and 850 nm (B850) varied slightly. Further increasing the fraction of glycerol (but not sorbitol) to 80% (v/v) induced distinct changes of the near infrared absorption and fluorescence spectra Transient absorption spectroscopy revealed that, following the fast processes of BChl-to-Crt triplet energy transfer, rather weak Qy signals of B800 and B850 remained and evolved in phase with the kinetics of triplet excited state Crt (3Crt*), which are attributed to the Qy band shift as a result of 3Crt*-BChl interaction. The steady state and the transient spectral responses of the Qy bands are found to correlate intimately with the water activity varying against polyol MW. and mixing ratio, which are rationalized by the change of the hydration status of the C- and N-termini of LH2. Our results suggest that, with reference to the mesophilic purple bacterium Rhodobacter sphaeroides 2.4.1, Tch. tepidum adopts substantially more robust LH2 hydration against the osmotic effects from the low MW. polyols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. X. Hu, A. Damjanovic, T. Ritz and K. Schulten, Architecture and mechanism of the light-harvesting apparatus of purple bacteria, Proc. Natl. Acad. Sci. U. S. A., 1998, 95(11), 5935–5941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. J. Linnanto and J. Korppi-Tommola, Modelling excitonic energy transfer in the photosynthetic unit of purple bacteria, Chem. Phys., 2009, 357(1), 171–180.

    Article  CAS  Google Scholar 

  3. V. Sundstrom, T. Pullerits and R. van Grondelle, Photosynthetic light-harvesting: Reconciling dynamics and structure of purple bacterial LH2 reveals function of photosynthetic unit, J. Phys. Chem. B, 1999, 103(13), 2327–2346.

    Article  Google Scholar 

  4. G. Mcdermott, S. M. Prince, A. A. Freer, A. M. Hawthornthwaitelawless, M. Z. Papiz, R. J. Cogdell and N. W. Isaacs, Crystal-structure of an integral membrane light-harvesting complex from photosynthetic bacteria, Nature, 1995, 374(6522), 517–521.

    Article  CAS  Google Scholar 

  5. M. Z. Papiz, S. M. Prince, T. Howard, R. J. Cogdell and N. W. Isaacs, The structure and thermal motion of the B800-850 LH2 complex from Rps. acidophila at 2.0 A. resolution and 100 K: new structural features and functionally relevant motions, J. Mol. Biol, 2003, 326(5), 1523–1538.

    Article  CAS  PubMed  Google Scholar 

  6. J. Koepke, X. Hu, C. Muenke, K. Schulten and H. Michel, The crystal structure of the light-harvesting complex II (B800-850) from Rhodospirillum molischianum, Structure, 1996, 4(5), 581–597.

    CAS  PubMed  Google Scholar 

  7. S. Niwa, L. J. Yu, K. Takeda, Y. Hirano, T. Kawakami, Z. Y. Wang-Otomo and K. Mild, Structure of the LH1-RC. complex from Thermochromatium tepidum at 3.0 A, Nature, 2014, 508(7495), 228–232.

    Article  CAS  PubMed  Google Scholar 

  8. J. Deisenhofer, O. Epp, K. Mild, R. Huber and H. Michel, Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3 A. resolution, Nature, 1985, 318(6047), 618–624.

    Article  CAS  PubMed  Google Scholar 

  9. J. Deisenhofer, O. Epp, I. Sinning and H. Michel, Crystallographic refinement at 2.3 A. resolution and refined model of the photosynthetic reaction centre from Rhodopseudomonas viridis, J. Mol Biol, 1995, 246(3), 429–457.

    Article  CAS  PubMed  Google Scholar 

  10. U. Ermler, G. Fritzsch, S. K. Buchanan and H. Michel, Structure of the photosynthetic reaction centre from Rhodobacter sphaeroides at 2.65 A. resolution: cofactors and protein-cofactor interactions, Structure, 1994, 2(10), 925–936.

    Article  CAS  PubMed  Google Scholar 

  11. T. Nogi, I. Fathir, M. Kobayashi, T. Nozawa and K. Mild, Crystal structures of photosynthetic reaction center and high-potential iron-sulfur protein from Thermochromatium tepidum: thermostability and electron transfer, Proc. Natl Acad. Sci. U. S. A., 2000, 97(25), 13561–13566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. S. Bahatyrova, R. N. Frese, C. A. Siebert, J. D. Olsen, K. O. Van Der Werf, R. Van Grondelle, R. A. Niederman, P. A. Bullough, C. Otto and C. N. Hunter, The native architecture of a photosynthetic membrane, Nature, 2004, 430(7003), 1058–1062.

    Article  CAS  PubMed  Google Scholar 

  13. S. Scheuring, D. Levy and J. L. Rigaud, Watching the components of photosynthetic bacterial membranes and their in situ organisation by atomic force microscopy, Biochim. Biophys. Acta, 2005, 1712(2), 109–127.

    Article  CAS  PubMed  Google Scholar 

  14. R. J. Cogdell, A. Gall and J. Kohler, The architecture and function of the light-harvesting apparatus of purple bacteria: from single molecules to in vivo membranes, Q. Rev. Biophys., 2006, 39(3), 227–324.

    Article  CAS  PubMed  Google Scholar 

  15. J. Neugebauer, Photophysical properties of natural light-harvesting complexes studied by subsystem density functional theory, J. Phys. Chem. B, 2008, 112(7), 2207–2217.

    Article  CAS  PubMed  Google Scholar 

  16. J. Linnanto, A. Freiberg and J. Korppi-Tommola, Quantum chemical simulations of excited-state absorption spectra of photosynthetic bacterial reaction center and antenna complexes, J. Phys. Chem. B, 2011, 115(18), 5536–5544.

    Article  CAS  PubMed  Google Scholar 

  17. Y. Shi, N. J. Zhao, P. Wang, L. M. Fu, L. J. Yu, J. P. Zhang and Z. Y. Wang-Otomo, Thermal adaptability of the light-harvesting complex 2 from thermochromatium tepidum: temperature-dependent excitation transfer dynamics, J. Phys. Chem. B, 2015, 119(47), 14871–14879.

    Article  CAS  PubMed  Google Scholar 

  18. T. J. Pflock, S. Oellerich, J. Southall, R. J. Cogdell, G. M. Ullmann and J. Kohler, The electronically excited states of LH2 complexes from Rhodopseudomonas acidophila strain 10050 studied by time-resolved spectroscopy and dynamic Monte Carlo simulations. I. Isolated, non-interacting LH2 complexes, J. Phys. Chem. B, 2011, 115(28), 8813–8820.

    Article  CAS  PubMed  Google Scholar 

  19. F. Sekine, K. Horiguchi, Y. Kashino, Y. Shimizu, L. J. Yu, M. Kobayashi and Z. Y. Wang, Gene sequencing and characterization of the light-harvesting complex 2 from thermophilic purple sulfur bacterium Thermochromatium tepidum, Photosynth. Res., 2012, 111(1–2), 9–18.

    Article  CAS  PubMed  Google Scholar 

  20. A. Gall, A. Ellervee, J. N. Sturgis, N. J. Fraser, R. J. Cogdell, A. Freiberg and B. Robert, Membrane protein stability: high pressure effects on the structure and chromophore-binding properties of the light-harvesting complex LH2, Biochemistry, 2003, 42(44), 13019–13026.

    Article  CAS  PubMed  Google Scholar 

  21. M. Hussels and M. Brecht, Effect of glycerol and PVA. on the conformation of photosystem, Biochemistry, 2011, 50(18), 3628–3637.

    Article  CAS  PubMed  Google Scholar 

  22. H. O’Neill and E. Greenbaum, Spectroscopy and photochemistry of spinach Photosystem I. entrapped and stabilized in a hybrid organosilicate glass, Chem. Mater., 2005, 17(10), 2654–2661.

    Article  CAS  Google Scholar 

  23. F. Mehrnejad, M. M. Ghahremanpour, M. Khadem-Maaref and F. Doustdar, Effects of osmolytes on the helical conformation of model peptide: Molecular dynamics simulation, J. Chem. Phys., 2011, 134, 035104.

    Article  PubMed  CAS  Google Scholar 

  24. P. K. GhattyVenkataKrishna and G. A. Carri, Effect of glycerol-water binary mixtures on the structure and dynamics of protein solutions, J. Biomol. Struct. Dyn., 2014, 32(3), 424–437.

    Article  CAS  PubMed  Google Scholar 

  25. T. Renger, I. Trostmann, C. Theiss, M. E. Madjet, M. Richter, H. Paulsen, H. J. Eichler, A. Knorr and G. Renger, Refinement of a structural model of a pigment-protein complex by accurate optical line shape theory and experiments, J. Phys. Chem. B, 2007, 111(35), 10487–10501.

    Article  CAS  PubMed  Google Scholar 

  26. C. Theiss, I. Trostmann, S. Andree, F. J. Schmitt, T. Renger, H. J. Eichler, H. Paulsen and G. Renger, Pigment-pigment and pigment-protein interactions in recombinant water-soluble chlorophyll proteins (WSCP) from cauliflower, J. Phys. Chem. B, 2007, 111(46), 13325–13335.

    Article  CAS  PubMed  Google Scholar 

  27. F. J. Schmitt, I. Trostmann, C. Theiss, J. Pieper, T. Renger, J. Fuesers, E. H. Hubrich, H. Paulsen, H. J. Eichler and G. Renger, Excited state dynamics in recombinant watersoluble chlorophyll proteins (WSCP) from cauliflower investigated by transient fluorescence spectroscopy, J. Phys. Chem. B, 2008, 112(44), 13951–13961.

    Article  CAS  PubMed  Google Scholar 

  28. J. J. Towey and L. Dougan, Structural examination of the impact of glycerol on water structure, J. Phys. Chem. B, 2012, 116(5), 1633–1641.

    Article  CAS  PubMed  Google Scholar 

  29. Y. F. Krupyanskii, P. Knox, N. Loiko, E. Abdulnasirov, O. Korotina, S. Stepanov, N. Zakharova, Y. A. Nikolaev and A. Rubin, Influence of chemical chaperones on the properties of lysozyme and the reaction center protein from Rhodohactersphaeroides, Biophysics, 2011, 56, 8–23.

    Article  Google Scholar 

  30. T. Miyazaki, M. Yoshida, M. Tamura, Y. Tanaka, K. Umezawa, A. Nishikawa and T. Tonozuka, Crystal structure of the N-terminal domain of a glycoside hydrolase family 131 protein from Coprinopsis cinerea, FEBS. Lett, 2013, 587(14), 2193–2198.

    Article  CAS  PubMed  Google Scholar 

  31. M. S. Khristin and N. B. Simonova, Extraction and stability of the pigment-protein complexes of the photosystem 2 from membranes of the unicellular alga Dunaliella salina: effect of glycerol, Membr. Cell Biol., 1998, 12(1), 57–66.

    CAS  PubMed  Google Scholar 

  32. A. Krieger, A. W. Rutherford and C. Jegerschold, Thermoluminescence measurements on chloride-depleted and calcium-depleted photosystem II, Biochim. Biophys. Acta, 1998, 1364(1), 46–54.

    Article  CAS  PubMed  Google Scholar 

  33. G. Palazzo, F. Francia, A. Mallardi, M. Giustini, F. Lopez and G. Venturoli, Water activity regulates the QA to QB electron transfer in photosynthetic reaction centers from Rhodobacter sphaeroides, J. Am. Chem. Soc, 2008, 130, 9353–9363.

    Article  CAS  PubMed  Google Scholar 

  34. A. Savitsky, M. Malferrari, F. Francia, G. Venturoli and K. Mobius, Bacterial photosynthetic reaction centers in trehalose glasses: coupling between protein conformational dynamics and electron-transfer kinetics as studied by laser-flash and high-field EPR. spectroscopies, J. Phys. Chem. B, 2010, 114(39), 12729–12743.

    Article  CAS  PubMed  Google Scholar 

  35. M. Malferrari, F. Francia and G. Venturoli, Coupling between electron transfer and protein-solvent dynamics: ftir and laser-flash spectroscopy studies in photosynthetic reaction center films at different hydration levels, J. Phys. Chem. B, 2011, 115(49), 14732–14750.

    Article  CAS  PubMed  Google Scholar 

  36. M. Malferrari, A. Mezzetti, F. Francia and G. Venturoli, Effects of dehydration on light-induced conformational changes in bacterial photosynthetic reaction centers probed by optical and differential FTIR. spectroscopy, Biochim. Biophys. Acta, Bioenerg., 2013, 1827(3), 328–339.

    Article  CAS  Google Scholar 

  37. M. Malferrari, F. Francia and G. Venturoli, Retardation of protein dynamics by trehalose in dehydrated systems of photosynthetic reaction centers. Insights from electron transfer and thermal denaturation kinetics, J. Phys. Chem. B, 2015, 119(43), 13600–13618.

    Article  CAS  PubMed  Google Scholar 

  38. M. Malferrari, P. Turina, F. Francia, A. Mezzetti, W. Leibl and G. Venturoli, Dehydration affects the electronic structure of the primary electron donor in bacterial photosynthetic reaction centers: evidence from visible-NIR. and light-induced difference FTIR. spectroscopy, Photochem. Photobiol. Sci., 2015, 14(2), 238–251.

    Article  CAS  PubMed  Google Scholar 

  39. H. McTavish, R. Picorel and M. Seibert, Stabilization of isolated photosystem II reaction center complex in the dark and in the light using polyethylene glycol and an oxygen-scrubbing system, Plant Physiol., 1989, 89(2), 452–456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. M. Hussels and M. Brecht, Evidence for direct binding of glycerol to photosystem I, FEBS. Lett., 2011, 585(15), 2445–2449.

    Article  CAS  PubMed  Google Scholar 

  41. J. J. Towey, A. K. Soper and L. Dougan, Preference for isolated water molecules in a concentrated glycerol-water mixture, J. Phys. Chem. B, 2011, 115(24), 7799–7807.

    Article  CAS  PubMed  Google Scholar 

  42. L. Ninni, M. Camargo and A. J. Meirelles, Water activity in polyol systems, J. Chem. Eng. Data, 2000, 45(4), 654–660.

    Article  CAS  Google Scholar 

  43. M. T. Madigan, A novel photosynthetic purple bacterium isolated from a Yellowstone hot spring,, 1984, 225(4659), 313–315.

    CAS  Google Scholar 

  44. F. Ma, Y. Kimura, X. H. Zhao, Y. S. Wu, P. Wang, L. M. Fu, Z. Y. Wang and J. P. Zhang, Excitation dynamics of two spectral forms of the core complexes from photosynthetic bacterium Thermochromatium tepidum, Biophys. J., 2008, 95(7), 3349–3357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. F. Ma, Y. Kimura, L. J. Yu, P. Wang, X. C. Ai, Z. Y. Wang and J. P. Zhang, Specific Ca2+-binding motif in the LH1 complex from photosynthetic bacterium Thermochromatium tepidum as revealed by optical spectroscopy and structural modeling, FEBS. Lett, 2009, 276(6), 1739–1749.

    Article  CAS  Google Scholar 

  46. M. G. Khrenova, A. V. Nemukhin, B. L. Grigorenko, P. Wang and J. P. Zhang, All-atom structures and calcium binding sites of the bacterial photosynthetic LH1-RC. core complex from Thermochromatium tepidum, J. Mol. Model., 2014, 20(6), 2287.

    Article  PubMed  CAS  Google Scholar 

  47. F. Ma, L.-J. Yu, Z.-Y. Wang-Otomo and R. van Grondelle, The origin of the unusual Qy red shift in LH1-RC. complexes from purple bacteria Thermochromatium tepidum as revealed by Stark absorption spectroscopy, Biochim. Biophys. Acta, Bioenerg., 2015, 1847(12), 1479–1486.

    Article  CAS  Google Scholar 

  48. H. Suzuki, Y. Hirano, Y. Kimura, S. Takaichi, M. Kobayashi, K. Mild and Z. Y. Wang, Purification, characterization and crystallization of the core complex from thermophilic purple sulfur bacterium Thermochromatium tepidum, Biochim. Biophys. Acta, Bioenerg., 2007, 1767(8), 1057–1063.

    Article  CAS  Google Scholar 

  49. F. Yang, L. J. Yu, P. Wang, X. C. Ai, Z. Y. Wang and J. P. Zhang, Effects of aggregation on the excitation dynamics of LH2 from Thermochromatium tepidum in aqueous phase and in chromatophores, J. Phys. Chem. B, 2011, 115(24), 7906–7913.

    Article  CAS  PubMed  Google Scholar 

  50. D. M. Niedzwiedzki, M. Fuciman, M. Kobayashi, H. A. Frank and R. E. Blankenship, Ultrafast time-resolved spectroscopy of the light-harvesting complex 2 (LH2) from the photosynthetic bacterium Thermochromatium tepidum, Photosynth. Res., 2011, 110(1), 49–60.

    Article  CAS  PubMed  Google Scholar 

  51. D. M. Niedzwiedzki, M. Kobayashi and R. E. Blankenship, Triplet excited state spectra and dynamics of carotenoids from the thermophilic purple photosynthetic bacterium Thermochromatium tepidum, Photosynth. Res., 2011, 107(2), 177–186.

    Article  CAS  PubMed  Google Scholar 

  52. F. Yang, L. J. Yu, P. Wang, X. C. Ai, Z. Y. Wang and J. P. Zhang, Excitation Dynamics of the Light-Harvesting Complex 2 from Thermochromatium tepidum, Acta Phys.-Chim. Sin., 2010, 26(7), 2021–2030.

    Article  CAS  Google Scholar 

  53. A. Gall, A. A. Pascal and B. Robert, Vibrational techniques applied to photosynthesis: Resonance Raman and fluorescence line-narrowing, Biochim. Biophys. Acta, Bioenerg., 2015, 1847(1), 12–18.

    Article  CAS  Google Scholar 

  54. J. P. Zhang, R. Fujii, P. Qian, T. Inaba, T. Mizoguchi, Y. Koyama, K. Onaka, Y. Watanabe and H. Nagae, Mechanism of the carotenoid-to-bacteriochlorophyll energy transfer via the S-l state in the LH2 complexes from purple bacteria, J. Phys. Chem. B, 2000, 104(15), 3683–3691.

    Article  CAS  Google Scholar 

  55. Y. Kakitani, J. Akahane, H. Ishii, H. Sogabe, H. Nagae and Y. Koyama, Conjugation-length dependence of the T1 lifetimes of carotenoids free in solution and incorporated into the LH2, LH1, RC, and RC-LH1 complexes: possible mechanisms of triplet-energy dissipation, Biochemistry, 2007, 46(8), 2181–2197.

    Article  CAS  PubMed  Google Scholar 

  56. M. Kuki, M. Naruse, T. Kakuno and Y. Koyamai, Resonance Raman evidence for 15-cis to all-trans photoisomerization of spirilloxanthin bound to a reduced form of the reaction center of Rhodospirillum rubrum, SI, Photochem. Photobiol., 1995, 62(3), 502–508.

    Article  CAS  Google Scholar 

  57. P. Qian, K. Saiki, T. Mizoguchi, K. Hara, T. Sashima, R. Fujii and Y. Koyama, Time-dependent changes in the carotenoid composition and preferential binding of spirilloxanthin to the reaction center and anhydrorhodovibrin to the LH1 antenna complex in Rhodobium marinum, Photochem. Photobiol, 2001, 74(3), 444–452.

    Article  CAS  PubMed  Google Scholar 

  58. E. Papagiannakis, S. K. Das, A. Gall, I. H. Van Stokkum, B. Robert, R. Van Grondelle, H. A. Frank and J. T. Kennis, Light harvesting by carotenoids incorporated into the B850 light-harvesting complex from Rhodobacter sphaeroides R-26.1: excited-state relaxation, ultrafast triplet formation, and energy transfer to bacteriochlorophyll, J. Phys. Chem. B, 2003, 107(23), 5642–5649.

    Article  CAS  Google Scholar 

  59. A. Gall, S. Henry, S. Takaichi, B. Robert and R. J. Cogdell, Preferential incorporation of coloured-carotenoids occurs in the LH2 complexes from non-sulphur purple bacteria under carotenoid-limiting conditions, Photosynth. Res., 2005, 86(1–2), 25–35.

    Article  CAS  PubMed  Google Scholar 

  60. N. Tonouchi, D. Kosumi, M. Sugisaki, M. Nango and H. Hashimoto, How do surrounding environments influence the electronic and vibrational properties of spheroi-dene?, Photosynth. Res., 2015, 124(1), 77–86.

    Article  CAS  PubMed  Google Scholar 

  61. Y. Kimura, Y. Inada, T. Numata, T. Arikawa, Y. Li, J. P. Zhang, Z. Y. Wang and T. Ohno, Metal cations modulate the bacteriochlorophyll-protein interaction in the light-harvesting 1 core complex from Thermochromatium tepidum, Biochim. Biophys. Acta, Bioenerg., 2012, 1817(7), 1022–1029.

    Article  CAS  Google Scholar 

  62. Y. Kimura, S. Kasuga, M. Unno, T. Furusawa, S. Osoegawa, Y. Sasaki, T. Ohno and Z. Y. Wang-Otomo, The roles of C-terminal residues on the thermal stability and local heme environment of cytochrome c’ from the thermophilic purple sulfur bacterium Thermochromatium tepidum, Photosynth. Res., 2015, 124(1), 19–29.

    Article  CAS  PubMed  Google Scholar 

  63. L. Limantara, R. Fujii, J. P. Zhang, T. Kakuno, H. Hara, A. Kawamori, T. Yagura, R. J. Cogdell and Y. Koyama, Generation of triplet and cation-radical bacteriochlorophyll a in carotenoidless LH1 and LH2 antenna complexes from Rhodobacter sphaeroides, Biochemistry, 1998, 37(50), 17469–17486.

    Article  CAS  PubMed  Google Scholar 

  64. L. Rimai, M. E. Heyde and D. Gill, Vibrational spectra of some carotenoids and related linear polyenes. Raman spectroscopic study, J. Am. Chem. Soc, 1973, 95(14), 4493–4501.

    Article  CAS  PubMed  Google Scholar 

  65. Y. Koyama, M. Kito, T. Takii, K. Saiki, K. Tsukida and J. Yamashita, Configuration of the carotenoid in the reaction centers of photosynthetic bacteria. Comparison of the resonance Raman spectrum of the reaction center of Rhodopseudomonas sphaeroides G1C. with those of cis-trans isomers of p-carotene, Biochim. Biophys. Acta, Bioenerg., 1982, 680(2), 109–118.

    Article  CAS  Google Scholar 

  66. Y. Koyama, I. Takatsuka, M. Nakata and M. Tasumi, Raman and infrared spectra of the all-trans, 7-cis, 9-cis, 13-cis and 15-β isomers of p-carotene: Key bands distinguishing stretched or terminal-bent configurations form central-bent configurations, J. Raman Spectrosc, 1988, 19(1), 37–49.

    Article  CAS  Google Scholar 

  67. Y. Koyama, T. Takii, K. Saiki and K. Tsukida, Configuration of the carotenoid in the reaction centers of photosynthetic bacteria. 2. Comparison of the resonance Raman lines of the reaction centers with those of the 14 different cis-trans isomers of beta-carotene, Photobiochem. Photobiophys., 1983, 5, 139–150.

    CAS  Google Scholar 

  68. M. M. Mendes-Pinto, E. Sansiaume, H. Hashimoto, A. A. Pascal, A. Gall and B. Robert, Electronic absorption and ground state structure of carotenoid molecules, J. Phys. Chem. B, 2013, 117(38), 11015–11021.

    Article  CAS  PubMed  Google Scholar 

  69. R. Z. Desamero, V. Chynwat, I. van der Hoef, F. J. Jansen, J. Lugtenburg, D. Gosztola, M. R. Wasielewski, A. Cua, D. F. Bocian and H. A. Frank, Mechanism of energy transfer from carotenoids to bacteriochlorophyll: Light-harvesting by carotenoids having different extents of -electron conjugation incorporated into the B850 antenna complex from the carotenoidless bacterium Rhodobacter sphaeroides R-26.1, J. Phys. Chem. B, 1998, 102(42), 8151–8162.

    Article  CAS  Google Scholar 

  70. J. Feng, X. Li and Y. Liu, Temperature-induced dissociation reaction and dynamics of light-harvesting complex II. isolated from purple photosynthetic bacterium Rps. palustris, Chin. Sci. Bull, 2007, 52(8), 1029–1035.

    Article  CAS  Google Scholar 

  71. D. Garcia, P. Parot, A. Vermeglio and M. T. Madigan, The light-harvesting complexes of a thermophilic purple sulfur photosynthetic bacterium Chromatium tepidum, Biochim. Biophys. Acta, Bioenerg., 1986, 850(2), 390–395.

    Article  CAS  Google Scholar 

  72. J. Alric, In vivo carotenoid triplet formation in response to excess light: a supramolecular photoprotection mechanism revisited, Photosynth. Res., 2005, 83(3), 335–341.

    Article  CAS  PubMed  Google Scholar 

  73. C. C. Gradinaru, J. T. M. Kennis, E. Papagiannakis, I. H. van Stokkum, R. J. Cogdell, G. R. Fleming and R. van Grondelle, An unusual pathway of excitation energy deactivation in carotenoids: singlet-to-triplet conversion on an ultrafast timescale in a photosynthetic antenna, Proc. Natl. Acad. Set U. S. A., 2001, 98(5), 2364–2369.

    Article  CAS  Google Scholar 

  74. D. M. Niedzwiedzki and R. E. Blankenship, Singlet and triplet excited state properties of natural chlorophylls and bacteriochlorophylls, Photosynth. Res., 2010, 106(3), 227–238.

    Article  CAS  PubMed  Google Scholar 

  75. A. Angerhofer, F. Bornhauser, A. Gall and R. Cogdell, Optical and optically detected magnetic resonance investigation on purple photosynthetic bacterial antenna complexes, Chem. Phys., 1995, 194(2), 259–274.

    Article  CAS  Google Scholar 

  76. R. Van der Vos, D. Carbonera and A. J. Hoff, Microwave and optical spectroscopy of carotenoid triplets in light-harvesting complex LHC. II of spinach by absorbance-detected magnetic resonance, Appl. Magn. Reson., 1991, 2, 179–202.

    Article  Google Scholar 

  77. J. B. Arellano, T. B. Melø, P. K. Fyfe, R. J. Cogdell and K. R. Naqvi, Multichannel flash spectroscopy of the reaction centers of wild-type and mutant Rhodobacter sphaeroides: bacteriochlorophylle-mediated interaction between the carotenoid triplet and the special pair, Photochem. Photobiol, 2004, 79, 68–75.

    CAS  PubMed  Google Scholar 

  78. X. Hong, Y. X. Weng and M. Li, Determination of the topological shape of integral membrane protein light-harvesting complex LH2 from photosynthetic bacteria in the detergent solution by small-angle X-ray scattering, Biophys. J., 2004, 86(2), 1082–1088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. S. M. Prince, T. D. Howard, D. A. Myles, C. Wilkinson, M. Z. Papiz, A. A. Freer, R. J. Cogdell and N. W. Isaacs, Detergent structure in crystals of the integral membrane light-harvesting complex LH2 from Rhodopseudomonas acidophila strain 10050, J. Mol. Biol, 2003, 326(1), 307–315.

    Article  CAS  PubMed  Google Scholar 

  80. L. Kangur, K. Timpmann and A. Freiberg, Stability of integral membrane proteins under high hydrostatic pressure: the LH2 and LH3 antenna pigment-protein complexes from photosynthetic bacteria, J. Phys. Chem. B, 2008, 112(26), 7948–7955.

    Article  CAS  PubMed  Google Scholar 

  81. T. Knubovets, J. J. Osterhout, P. J. Connolly and A. M. Klibanov, Structure, thermostability, and conformational flexibility of hen egg-white Iysozyme dissolved in glycerol, Proc. Natl. Acad. Sci. U. S. A., 1999, 96(4), 1262–1267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. R. Sinibaldi, M. G. Ortore, F. Spinozzi, F. Carsughi, H. Frielinghaus, S. Cinelli and P. Mariani, Preferential hydration of Iysozyme in water/glycerol mixtures: a small-angle neutron scattering study, J. Chem. Phys., 2007, 126, 235101–235109.

    Article  PubMed  CAS  Google Scholar 

  83. J. B. Segur and H. E. Oberstar, Viscosity of glycerol and its aqueous solutions, Ind. Eng. Chem., 1951, 43(9), 2117–2120.

    Article  CAS  Google Scholar 

  84. Y. F. Hu, Z. X. Zhang, Y. H. Zhang, S. S. Fan and D. Q. Liang, Viscosity and density of the nonelectrolyte system mannitol plus sorbitol plus sucrose plus H2O. and its binary and ternary subsystems at 298.15 K, J. Chem. Eng. Data, 2006, 51(2), 438–442.

    Article  CAS  Google Scholar 

  85. J. G. Sampedro and S. Uribe, Trehalose-Enzyme interactions result in structure stabilization and activity inhibition. The role of viscosity, Mol. Cell. Biochem., 2004, 256-257(1–2), 319–327.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Ping Zhang.

Additional information

Electronic supplementary information (ESI) available: Transient absorption spectra and kinetic traces of LH2s at additional polyol concentrations, results of spectral simulation, and protein sequence comparison of LH2s. See DOI:10.1039/c6pp00270f

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Yu, J., Yu, LJ. et al. Dependence of the hydration status of bacterial light-harvesting complex 2 on polyol cosolventsf. Photochem Photobiol Sci 16, 795–807 (2017). https://doi.org/10.1039/c6pp00270f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c6pp00270f

Navigation