Skip to main content
Log in

Solvent-induced multicolour fluorescence of amino-substituted 2,3-naphthalimides studied by fluorescence and transient absorption measurements

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A series of amino-2,3-naphthalimide derivatives having the amino functionality at 1-, 5- and 6-positions (1ANI, 5ANI and 6ANI, respectively) were prepared, and their photophysical properties were systematically investigated based on the measurements of steady-state absorption and fluorescence spectra, fluorescence lifetimes as well as transient absorption spectra. The ANIs efficiently fluoresced in solution, and the emission spectra appreciably shifted depending on the solvent polarity. 1ANI displayed only a slight fluorescence red-shift upon increasing the solvent polarity. In contrast, 5ANI and 6ANI showed marked positive solvatofluorochromism with large Stokes shifts displaying multicolour fluorescence; the fluorescence colours of 5ANI and 6ANI varied from violet–blue in hexane to orange–red in methanol. 5ANI and 6ANI, thus, serve as micro-environment responding fluorophores. In methanol, the intensity of the fluorescence emission band of 5ANI and 6ANI significantly reduced. Based on the fluorescence quantum yields and lifetimes, and transient absorption measurements, it has been revealed that internal conversion from the S1 state of ANIs to the ground state was accelerated by the protic medium, resulting in a reduction in their fluorescence efficiency, while intersystem crossing from the S1 state to a triplet state was not responsible for the decrease of fluorescence intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Reichardt, Solvatochromic dyes as solvent polarity indicators, Chem. Rev., 1994, 94, 2319–2358.

    Article  CAS  Google Scholar 

  2. H. G. Löhr, F. Vögtle, Chromo- and fluoroionophores. A new class of dye reagents, Acc. Chem. Res., 1985, 18, 65–72.

    Article  Google Scholar 

  3. M. Sameiro, T. Gonçalves, Fluorescent labeling of biomolecules with organic probes, Chem. Rev., 2009, 109, 190–212.

    Article  CAS  Google Scholar 

  4. Z. Yang, J. Cao, Y. He, J. H. Yang, T. Kim, X. Peng and J. S. Kim, Macro-/micro-environment-sensitive chemosensing and biological imaging, Chem. Soc. Rev., 2014, 43, 4563–4601.

    Article  CAS  PubMed  Google Scholar 

  5. E. Pazos, O. Vázquez, J. L. Mascareñas, M. E. Vázquez, Peptide-based fluorescent biosensors, Chem. Soc. Rev., 2009, 38, 3348–3359.

    Article  CAS  PubMed  Google Scholar 

  6. A. R. Katritzky and T. Narindoshvili, Fluorescent amino acids: advances in protein-extrinsic fluorophores, Org. Biomol. Chem., 2009, 7, 627–634.

    Article  CAS  PubMed  Google Scholar 

  7. L. E. Santos-Figueroa, M. E. Moragues, E. Climent, A. Agostini, R. Martínez-Máñez, F. Sancenón, Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the years 2010–2011, Chem. Soc. Rev., 2013, 42, 3489–3613.

    Article  CAS  PubMed  Google Scholar 

  8. B. Valeur and I. Leray, Design principles of fluorescent molecular sensors for cation recognition, Coord. Chem. Rev., 2000, 205, 3–40.

    Article  CAS  Google Scholar 

  9. J. F. Callan, A. P. de Silva and D. C. Magri, Luminescent sensors and switches in the early 21st century, Tetrahedron, 2005, 61, 8551–8588.

    Article  CAS  Google Scholar 

  10. A. P. de Silva, T. S. Moody and G. D. Wright, Fluorescent PET (Photoinduced Electron Transfer) sensors as potent analytical tools, Analyst, 2009, 134, 2385–2393.

    Article  PubMed  CAS  Google Scholar 

  11. L. Fabbrizzi, M. Licchelli, G. Rabaioli and A. Taglietti, The design of luminescent sensors for anions and ionisable analytes, Coord. Chem. Rev., 2000, 205, 85–108.

    Article  CAS  Google Scholar 

  12. H. Okamoto, H. Konishi, M. Kohno and K. Satake, Fluorescence response of a 4-trifluoroacetylaminophthalimide to iodide ions upon 254 nm irradiation in MeCN, Org. Lett., 2008, 10, 3125–3128.

    Article  CAS  PubMed  Google Scholar 

  13. H. Okamoto, H. Konishi and K. Satake, Fluorescence response of 3-trifluoroacetylaminophthalimide to Li+–I- ion pair induced by 254 nm photolysis in acetonitrile, Chem. Commun., 2012, 48, 2346–2348.

    Article  CAS  Google Scholar 

  14. A. P. de Silva,, Molecular logic-based computation, RCS Publishing, Cambridge, 2013.

    Google Scholar 

  15. V. Balzani, M. Venturi and A. Credi, Molecular Devices and Machines: A Journey into the Nanoworld, Wiley-VCH, Weinheim, 2003.

    Book  Google Scholar 

  16. S. Banthia and A. Samanta, Multiple logical access with a single fluorophore–spacer–receptor system: Realization of inhibit (INH) logic function, Eur. J. Org. Chem., 2005, 4967–4970.

    Google Scholar 

  17. H. Okamoto, M. Kohno, K. Satake and M. Kimura, An azacrowned phthalimide as a metal-ion sensitive and solvatofluorochromic fluorophore: Fluorescence properties and a mimic integrated logic operation, Bull. Chem. Soc. Jpn., 2005, 78, 2180–2187.

    Article  CAS  Google Scholar 

  18. D. Noukakis and P. Suppan, Photophysics of aminophthalimides in solution I. Steady-state spectroscopy, J. Lumin., 1991, 47, 285–295.

    Article  CAS  Google Scholar 

  19. A. Morimoito, T. Yatsuhashi, T. Shimada, L. Biczók, D. A. Tryk and H. Inoue, Radiationless deactivation of an intramolecular charge transfer excited state through hydrogen bonding: Effect of molecular structure and hard-soft anionic character in the excited state, J. Phys. Chem. A, 2001, 105, 10488–10496.

    Article  CAS  Google Scholar 

  20. A. M. Durantini, R. D. Falcone, J. D. Anunziata, J. J. Silber, E. B. Abuin, E. A. Lissi and N. M. Correa, An interesting case where water behaves as a unique solvent. 4-Aminophthalimide emission profile to monitor aqueous environment, J. Phys. Chem. B, 2013, 117, 2160–2168.

    Article  CAS  PubMed  Google Scholar 

  21. D. C. Khara, S. Banerjee and A. Samanta, Does excited-state proton-transfer reaction contribute to the emission behaviour of 4-aminophthalimide in aqueous media?, ChemPhysChem, 2014, 15, 1793–1798.

    Article  CAS  PubMed  Google Scholar 

  22. A. Soldevilla, R. Pérez-Ruiz, Y. D. Miara and A. Griesbeck, Decarboxylative photorelease coupled with fluorescent up/down reporter function based on the aminophthalimide–serine system, Chem. Commun., 2010, 46, 3747–3749.

    Article  CAS  Google Scholar 

  23. P. Klán, T. Šolomek, C. G. Bochet, A. Blanc, R. Givens, M. Rubina, V. Popik, A. Kostikov and J. Wirz, Photoremovable protecting groups in chemistry and biology: Reaction mechanisms and efficacy, Chem. Rev., 2013, 113, 119–191.

    Article  PubMed  CAS  Google Scholar 

  24. G. Weber and F. J. Farris, Synthesis and spectral properties of a hydrophobic fluorescent probe: 6-propionyl-2-(dimethylamino)naphthalene, Biochemistry, 1979, 18, 3075–3078.

    Article  CAS  PubMed  Google Scholar 

  25. Z. Yang, J. Cao, Y. He, J. H. Yang, T. Kim, X. Peng and J. S. Kim, Macro-/micro-environment-sensitive chemosensing and biological imaging, Chem. Soc. Rev., 2014, 43, 4563–4601.

    Article  CAS  PubMed  Google Scholar 

  26. G. Saroja, T. Soujanya, B. Ramachandram and A. Samanta, 4-Aminophthalimide derivatives as environment-sensitive probes, J. Fluoresc., 1998, 8, 465–410.

    Article  Google Scholar 

  27. G. Jones II, W. R. Jackson, S. Kanoktanaporn and A. M. Halpern, Solvent effects on photophysical parameters for coumarin laser dyes, Opt. Commun., 1980, 33, 315–320.

    Article  CAS  Google Scholar 

  28. G. Jones II, W. R. Jackson and A. M. Halpern, Medium effects on fluorescence quantum yields and lifetimes for coumarin laser dyes, Chem. Phys. Lett., 1980, 72, 391–395.

    Article  CAS  Google Scholar 

  29. S. Banerjee, E. B. Veale, C. M. Phelan, S. A. Murphy, G. M. Tocci, L. J. Gillespie, D. O. Frimannsson, J. M. Kelly and T. Gunnlaugsson, Chem. Soc. Rev., 2013, 42, 1601–1618.

    Article  CAS  PubMed  Google Scholar 

  30. J. Karpiuk, Y. N. Svartsov and J. Nowacki, Photoinduced intramolecular charge transfer to meta position of benzene ring in 6-aminophthalides, Phys. Chem. Chem. Phys., 2005, 7, 4070–4081.

    Article  CAS  PubMed  Google Scholar 

  31. H. Okamoto, A. Matsui and K. Satake, Phthalide-derived novel fluoroionophores incorporating picolylamino receptors: Synthesis and response to metal cations, Analyst, 2011, 136, 3164–3169.

    Article  CAS  PubMed  Google Scholar 

  32. M. Eugenio Vázquez, J. B. Blanco and B. Imperiali, Photophysics and biological applications of the environment-sensitive fluorophore 6-N,N-dimethylamino-2,3-naphthalimide, J. Am. Chem. Soc., 2005, 127, 1300–1306.

    Article  PubMed  CAS  Google Scholar 

  33. M. Sainlos and B. Imperiali, Tools for investigating peptide-protein interactions: Peptide incorporation of environment-sensitive fluorophores through SPPS-based ‘building block’ approach, Nat. Protoc., 2007, 2, 3210–3218.

    Article  CAS  PubMed  Google Scholar 

  34. P. Venkatraman, T. T. Nguyen, M. Sainlos, O. Bilsel, S. Chitta, B. Imperiali and L. J. Stern, Fluorogenic probes for monitoring peptide binding to class II MHC proteins in living cells, Nat. Chem. Biol., 2007, 3, 222–228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. G. Loving and B. Imperiali, A versatile amino acid analogue of the solvatochromic fluorophore 4-N,N-dimethylamino-1,8-naphthalimide: A powerful tool for the study of dynamic protein interactions, J. Am. Chem. Soc., 2008, 130, 13630–13638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. M. E. Vázquez, J. B. Blanco, S. Salvadori, C. Trapella, R. Argazzi, S. D. Bryant, Y. Jinsmaa, L. H. Lazarus, L. Negri, E. Giannini, R. Lattanzi, M. Colucci and G. Balboni, 6-N,N-Dimethylamino-2,3-naphthalimide: A new environment-sensitive fluorescent probe in d and µ-Selective opioid peptides, J. Med. Chem., 2006, 49, 3653–3658.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. V. V. Kapoerchan, M. Wiesner, U. Hillaert, J. W. Drijfhout, M. Overhand, P. Alard, G. A. van der Marel, H. S. Overkleeft and F. Koning, Design, synthesis and evaluation of high-affinity binders for the celiac disease associated HLA-DQ2 molecule, Mol. Immunol., 2010, 47, 1091–1097.

    Article  CAS  PubMed  Google Scholar 

  38. K. Baathulaa, Y. Xu and X. Qian, Unusual large Stokes shift and solvatochromic fluorophore: Synthesis, spectra, and solvent effect of 6-substituted 2,3-naphthalimide, J. Photochem. Photobiol., A, 2010, 216, 24–34.

    Article  CAS  Google Scholar 

  39. P. A. Wender, M. S. Jeffreys and A. G. Raub, Tetramethyleneethane equivalents: Recursive reagents for serialized cycloadditions, J. Am. Chem. Soc., 2015, 137, 9088–9093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. B. E. Cross, H. D. K. Drew, Chemiluminescent organic compounds. Part IX. 5-Amino-ßß-naphthalaz-1:4-dione, J. Chem. Soc., 1949, 1532–1535.

    Google Scholar 

  41. G. Periyasami, L. Martelo, C. Baleizão and M. N. Berberan-Santos, Strong green chemiluminescence from naphthalene analogues of luminol, New J. Chem., 2014, 38, 2258–2261.

    Article  CAS  Google Scholar 

  42. P. Nandhikonda and M. D. Heagy, Dual fluorescent N-aryl-2,3-naphthalimides: Applications in ratiometric DNA detection and white organic light-emitting devices, Org. Lett., 2010, 12, 4796–4799.

    Article  CAS  PubMed  Google Scholar 

  43. J. Wildeman, P. C. Borgen, H. Pluim, P. H. F. M. Rouwette, A. M. van Leusen, Synthesis of naphthalenes from ortho-substituted benzyl sulfones and Michael acceptors, Tetrahedron Lett., 1978, 19, 2213–2216.

    Article  Google Scholar 

  44. R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford University Press, New York, 1989.

    Google Scholar 

  45. A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 1993, 98, 5648–5652.

    Article  CAS  Google Scholar 

  46. C. Lee, W. Yang and R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B: Condens. Matter, 1988, 37, 785–789.

    Article  CAS  Google Scholar 

  47. R. E. Stratmann, G. E. Scuseria and M. J. Frisch, An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules, J. Chem. Phys., 1998, 109, 8218–8224.

    Article  CAS  Google Scholar 

  48. E. Lippert, Dipolmoment und Elektronenstruktur von angeregten Molekülen, Z. Naturforsch., A: Phys. Sci., 1955, 10, 541–545.

    Article  Google Scholar 

  49. N. Mataga, Y. Kaifu and M. Koizumi, The solvent effect on fluorescence spectrum. Change of solute-solvent interaction during the lifetime of excited solute molecule, Bull. Chem. Soc. Jpn., 1955, 28, 690–691.

    Article  CAS  Google Scholar 

  50. L. Onsager, Electric moments of molecules in liquids, J. Am. Chem. Soc., 1936, 58, 1486–1493.

    Article  CAS  Google Scholar 

  51. S. Mukherjee, A. Chattopadhyay, A. Samanta and T. Soujanya, Dipole moment change of NBD group upon excitation studied using solvatochromic and quantum chemical approaches: Implications in membrane research, J. Phys. Chem., 1994, 98, 2809–2812.

    Article  CAS  Google Scholar 

  52. S. Aich, C. Raha and S. Basu, Characterization of the triplet charge-transfer state of 4-amino-N-methylphthalimide in aprotic and protic media by laser flash photolysis, J. Chem. Soc., Faraday Trans., 1997, 93, 2991–2996.

    Article  CAS  Google Scholar 

  53. B. Bhattacharya and A. Samanta, Laser flash photolysis study of the aminophthalimide derivatives: Elucidation of the nonradiative deactivation route, Chem. Phys. Lett., 2007, 442, 316–321.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideki Okamoto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujii, M., Namba, M., Yamaji, M. et al. Solvent-induced multicolour fluorescence of amino-substituted 2,3-naphthalimides studied by fluorescence and transient absorption measurements. Photochem Photobiol Sci 15, 842–850 (2016). https://doi.org/10.1039/c6pp00048g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c6pp00048g

Navigation