Skip to main content
Log in

Fluorescence behaviour of 2-, 3- and 4-amino-1,8-naphthalimides: effects of the substitution positions of the amino functionality on the photophysical properties

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The absorption and fluorescence spectra of a series of 1,8-naphthalimide derivatives incorporating the amino functionality at the 2-, 3- and 4-positions of the naphthalene ring (2APNI, 3APNI and 4APNI, respectively) were systematically investigated in various solvents and in the solid state. The fluorescence spectra of 2APNI were insensitive to solvent polarity and intermolecular hydrogen-bonding even in a protic medium such as methanol. Thus, 2APNI displayed blue fluorescence with a moderate fluorescence quantum yield (\(\lambda _{\max }^{\text{F}} = 420 - 445\,{\text{nm}}\), ΦF 0.2–0.3) in the solvents investigated. In contrast, the fluorescence spectra of 3APNI and 4APNI were strongly solvent dependent showing positive solvatofluorochromism with large Stokes shifts. Upon increasing the solvent polarity, the fluorescence colours changed from blue in hexane (\(\lambda _{\max }^{\text{F}} = 429\,{\text{nm}}\)) to orange-yellow in methanol (\(\lambda _{\max }^{\text{F}} = 564\,{\text{nm}}\)) for 3APNI, and from blue in hexane (\(\lambda _{\max }^{\text{F}} = 460\,{\text{nm}}\)) to yellow in methanol (\(\lambda _{\max }^{\text{F}} = 538\,{\text{nm}}\)) for 4APNI. The fluorescence quantum yields of 3APNI and 4APNI decreased with increasing solvent polarity. In the solid state, APNIs displayed red-shifted fluorescence emission compared to that in solution (\(\lambda _{\max }^{\text{F}} = 541\,{\text{nm}}\) for 2APNI, 575 nm for 3APNI, and 561 nm for 4APNI) and the fluorescence quantum yields in the solid state were lower than those in solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. H. Lee, J. S. Kim, J. L. Sessler, Small molecule-based ratiometric fluorescence probes for cations, anions, and biomolecules, Chem. Soc. Rev., 2015, 44, 4185–4191.

    Article  CAS  PubMed  Google Scholar 

  2. M. S. T. Gonçalves, Fluorescent labeling of biomolecules with organic probes, Chem. Rev., 2009, 109, 190–212.

    Article  PubMed  CAS  Google Scholar 

  3. Z. Yang, J. Cao, Y. He, J. H. Yang, T. Kim, X. Peng, J. S. Kim, Macro-/micro-environment-sensitive chemosensing and biological imaging, Chem. Soc. Rev., 2014, 43, 4563–4601.

    Article  CAS  PubMed  Google Scholar 

  4. E. Pazos, O. Vazquez, J. L. Mascareñas, M. E. Vázquez, Peptide-based fluorescent biosensors, Chem. Soc. Rev., 2009, 38, 3348–3359.

    Article  CAS  PubMed  Google Scholar 

  5. L. E. Santos-Figueroa, M. E. Moragues, E. Climent, A. Agostini, R. Martínez-Máñez, F. Sancenón, Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the years 2010-2011, Chem. Soc. Rev., 2013, 42, 3489–3613.

    Article  CAS  PubMed  Google Scholar 

  6. B. Valeur, I. Leray, Design principles of fluorescent molecular sensors for cation recognition, Coord. Chem. Rev., 2000, 205, 3–40.

    Article  CAS  Google Scholar 

  7. J. F. Callan, A. P. de Silva, D. C. Magri, Luminescent sensors and switches in the early 21st century, Tetrahedron, 2005, 61, 8551–8588.

    Article  CAS  Google Scholar 

  8. A. P. De Silva, T. S. Moody, G. D. Wright, Fluorescent PET (Photoinduced Electron Transfer) sensors as potent analytical tools, Analyst, 2009, 134, 2385–2393.

    Article  PubMed  CAS  Google Scholar 

  9. L. Fabbrizzi, M. Licchelli, G. Rabaioli, A. Taglietti, The design of luminescent sensors for anions and ionisable analytes, Coord. Chem. Rev., 2000, 205, 85–108.

    Article  CAS  Google Scholar 

  10. H. Okamoto, H. Konishi, M. Kohno, K. Satake, Fluorescence response of a 4-trifluoroacetylaminophthalimide to iodide ions upon 254 nm irradiation in MeCN, Org. Lett., 2008, 10, 3125–3128.

    Article  CAS  PubMed  Google Scholar 

  11. H. Okamoto, H. Konishi, K. Satake, Fluorescence response of 3-trifluoroacetylaminophthalimide to a Li+-I ion pair induced by 254 nm photolysis in acetonitrile, Chem. Commun., 2012, 48, 2346–2348.

    Article  CAS  Google Scholar 

  12. V. Balzani, M. Venturi and A. Credi, Molecular Devices and Machines: A Journey into the Nano World, Wiley-VCH, Weinheim, Germany, 2003.

    Book  Google Scholar 

  13. A. P. De Silva, Molecular Logic-based Computing, Royal Society of Chemistry, Cambrige, UK, 2013.

    Google Scholar 

  14. B. L. Feringa and W. R. Browne, Molecular Switches, Wiley-VCH, Weinheim, Germany, 2011.

    Book  Google Scholar 

  15. E. Krystkowiak, K. Dobek, A. Maciejewski, Origin of the strong effect of protic solvents on the emission spectra, quantum yield of fluorescence and fluorescence lifetime of 4-aminophthalimide: Role of hydrogen bonds in deactivation of S1-4-aminophthalimide, J. Photochem. Photobiol., A, 2006, 184, 250–264.

    Article  CAS  Google Scholar 

  16. S. Das, A. Datta, K. Bhattacharyya, Deuterium isotope effect on 4-aminophthalimide in neat water and reverse micelles, J. Phys. Chem. A, 1997, 101, 3299–3304.

    Article  CAS  Google Scholar 

  17. A. Morimoito, T. Yatsuhashi, T. Shimada, L. Biczók, D. A. Tryk, H. Inoue, Radiationless deactivation of an intramolecular charge transfer excited state through hydrogen bonding: Effect of molecular structure and hard−soft anionic character in the excited state, J. Phys. Chem. A, 2001, 105, 10488–10496.

    Article  CAS  Google Scholar 

  18. A. M. Durantini, R. D. Falcone, J. D. Anunziata, J. J. Silber, E. B. Abuin, E. A. Lissi, N. M. Correa, An interesting case where water behaves as a unique solvent. 4-Aminophthalimide emission profile to monitor aqueous environment, J. Phys. Chem. B, 2013, 117, 2160–2168.

    Article  CAS  PubMed  Google Scholar 

  19. D. C. Khara, S. Banerjee, A. Samanta, Does excited-state proton-transfer reaction contribute to the emission behaviour of 4-aminophthalimide in aqueous media?, ChemPhysChem, 2014, 15, 1793–1798.

    Article  CAS  PubMed  Google Scholar 

  20. G. Weber, F. J. Farris, Synthesis and spectral properties of a hydrophobic fluorescent probe: 6-propionyl-2-(dimethylamino) naphthalene, Biochemistry, 1979, 18, 3075–3078.

    Article  CAS  PubMed  Google Scholar 

  21. D. Noukakis, P. Suppan, Photophysics of aminophthalimides in solution I. Steady-state spectroscopy, J. Lumin., 1991, 47, 285–295.

    Article  CAS  Google Scholar 

  22. B. Valeur and M. N. Berberan-Santos, Molecular Fluorescence: Principles and Applications, Wiley-VCH, Weinheim, Germany, 2012.

    Book  Google Scholar 

  23. Z. R. Grabowski, K. Rotkiewicz, W. Rettig, Structural changes accompanying intramolecular electron transfer: focus on twisted intramolecular charge-transfer states and structures, Chem. Rev., 2003, 103, 3899–4032.

    Article  PubMed  Google Scholar 

  24. X. Liu, Q. Qiao, W. Tian, W. Liu, J. Chen, M. J. Lang, Z. Xu, Aziridinyl fluorophores demonstrate bright fluorescence and superior photostability by effectively inhibiting twisted intramolecular charge transfer, J. Am. Chem. Soc., 2016, 138, 6960–6963.

    Article  CAS  PubMed  Google Scholar 

  25. R. Orita, M. Franckevičius, A. Vyšniauskas, V. Gulbinas, H. Sugiyama, H. Uekusa, K. Kanosue, R. Ishige, S. Ando, Enhanced fluorescence of phthalimide compounds induced by the incorporation of electron-donating alicyclic amino groups, Phys. Chem. Chem. Phys., 2018, 20, 16033–16044.

    Article  CAS  PubMed  Google Scholar 

  26. Z. Szakács, S. Rousseva, M. Bojtár, D. Hessz, I. Bitter, M. Kállay, M. Hilbers, H. Zhang, M. Kubinyi, Experimental evidence of TICT state in 4-piperidinyl-1,8-naphthalimide-a kinetic and mechanistic study, Phys. Chem. Chem. Phys., 2018, 20, 10155–10164.

    Article  PubMed  Google Scholar 

  27. P. Kucheryavy, G. Li, S. Vyas, C. Hadad, K. D. Glusac, Electronic properties of 4-substituted naphthalimides, J. Phys. Chem. A, 2009, 113, 6453–6461.

    Article  CAS  PubMed  Google Scholar 

  28. M. E. Vázquez, J. B. Blanco, B. Imperiali, Photophysics and biological applications of the environment-sensitive fluorophore 6-N,N-dimethylamino-2, 3-naphthalimide, J. Am. Chem. Soc., 2005, 127, 1300–1306.

    Article  PubMed  CAS  Google Scholar 

  29. M. E. Vázquez, J. B. Blanco, S. Salvadori, C. Trapella, R. Argazzi, S. D. Bryant, Y. Jinsmaa, L. H. Lazarus, L. Negri, E. Giannini, 6-N,N-dimethylamino-2,3-naphthalimide: a new environment-sensitive fluorescent probe in δ-and μ-selective opioid peptides, J. Med. Chem., 2006, 49, 3653–3658.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. M. Fujii, M. Namba, M. Yamaji, H. Okamoto, Solvent-induced multicolor fluorescence of amino-substituted 2,3-naphthalimides studied by fluorescence and transient absorption measurements, Photochem. Photobiol. Sci., 2016, 15, 842–850.

    Article  CAS  PubMed  Google Scholar 

  31. R. M. Duke, E. B. Veale, F. M. Pfeffer, P. E. Kruger, T. Gunnlaugsson, Colorimetric and fluorescent anion sensors: an overview of recent developments in the use of 1,8-naphthalimide-based chemosensors, Chem. Soc. Rev., 2010, 39, 3936–3953.

    Article  CAS  PubMed  Google Scholar 

  32. G. Loving, B. Imperiali, A versatile amino acid analogue of the solvatochromic fluorophore 4-N,N-dimethylamino-1,8-naphthalimide: a powerful tool for the study of dynamic protein interactions, J. Am. Chem. Soc., 2008, 130, 13630–13638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. P. Gopikrishna, N. Meher, P. K. Iyer, Functional 1,8-naphthalimide AIE/AIEEgens: recent advances and prospects, ACS Appl. Mater. Interfaces, 2017, 10, 12081–12111.

    Article  PubMed  CAS  Google Scholar 

  34. S. Banerjee, E. B. Veale, C. M. Phelan, S. A. Murphy, G. M. Tocci, L. J. Gillespie, D. O. Frimannsson, J. M. Kelly, T. Gunnlaugsson, Recent advances in the development of 1, 8-naphthalimide based DNA targeting binders, anticancer and fluorescent cellular imaging agents, Chem. Soc. Rev., 2013, 42, 1601–1618.

    Article  CAS  PubMed  Google Scholar 

  35. M. S. Alexiou, V. Tychopoulos, S. Ghorbanian, J. H. P. Tyman, R. G. Brown, P. Brittain, The UV–visible absorption and fluorescence of some substituted 1,8-naphthalimides and naphthalic anhydrides, J. Chem. Soc., Perkin Trans. 2, 1990, 837–842.

    Google Scholar 

  36. D. Gendron, E. Gann, K. Pattison, F. Maasoumi, C. R. McNeill, S. E. Watkins, P. L. Burn, B. J. Powell, P. E. Shaw, Synthesis and properties of pyrrolo[3,2-b]pyrrole-1,4-diones (isoDPP) derivatives, J. Mater. Chem. C, 2014, 2, 4276–4288.

    Article  CAS  Google Scholar 

  37. C. Markl, D. Zlotos, A novel synthesis of the antidepressant agomelatine, Synthesis, 2011, 79–82.

    Google Scholar 

  38. J. Cason, A. Weiss, S. A. Monti, Synthesis of four methoxy-substituted 1,8-naphthalic anhydrides and of the three monomethyl-1,8-naphthalic anhydrides, J. Org. Chem., 1968, 33, 3404–3408.

    Article  CAS  Google Scholar 

  39. Y. Xia, P. Qu, Z. Liu, R. Ge, Q. Xiao, Y. Zhang, J. Wang, Catalyst-free intramolecular formal carbon insertion into sigma-C-C bonds: a new approach toward phenanthrols and naphthols, Angew. Chem., Int. Ed., 2013, 52, 2543–2546.

    Article  CAS  Google Scholar 

  40. R. G. Parr and W. Yang, Density-functional Theory of Atoms and Molecules, Oxford University Press, New York, 1989.

    Google Scholar 

  41. C. Adamo, V. Barone, Toward reliable density functional methods without adjustable parameters: The PBE0 model, J. Chem. Phys., 1999, 110, 6158–6170.

    Article  CAS  Google Scholar 

  42. M. P. Andersson, P. Uvdal, New scale factors for harmonic vibrational frequencies using the B3LYP density functional method with the triple-ζ basis set 6-311+G(d,p), J. Phys. Chem. A, 2005, 109, 2937–2941.

    Article  CAS  PubMed  Google Scholar 

  43. A. E. Reed, R. B. Weinstock, F. Weinhold, Natural population analysis, J. Chem. Phys., 1985, 83, 735–746.

    Article  CAS  Google Scholar 

  44. G. Jones, W. R. Jackson, C. Y. Choi, W. R. Bergmark, Solvent effects on emission yield and lifetime for coumarin laser dyes. requirements for a rotatory decay mechanism, J. Phys. Chem., 1985, 89, 294–300.

    Article  CAS  Google Scholar 

  45. M. Tichy, The determination of intramolecular hydrogen bonding by infrared spectroscopy and its applications in stereochemistry, Adv. Org. Chem., 1965, 5, 115–298.

    CAS  Google Scholar 

  46. R. E. Stratmann, G. E. Scuseria, M. J. Frisch, An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules, J. Chem. Phys., 1998, 109, 8218–8224.

    Article  CAS  Google Scholar 

  47. V. Barone, M. Cossi, Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model, J. Phys. Chem. A, 1998, 102, 1995–2001.

    Article  CAS  Google Scholar 

  48. S. Saha, A. Samanta, Influence of the structure of the amino group and polarity of the medium on the photophysical behavior of 4-amino-1,8-naphthalimide derivatives, J. Phys. Chem. A, 2002, 106, 4763–4771.

    Article  CAS  Google Scholar 

  49. A. Pardo, E. Martin, J. Poyato, J. Camacho, M. Brana, J. Castellano, Synthesis and photophysical properties of some N-substituted-1,8-naphthalimides, J. Photochem. Photobiol., A, 1987, 41, 69–78.

    Article  CAS  Google Scholar 

  50. E. Lippert, Dipolmoment und Elektronenstruktur von angeregten Molekülen, Z. Naturforsch., A: Phys. Sci., 1955, 10, 541–545.

    Article  Google Scholar 

  51. N. Mataga, Y. Kaifu, M. Koizumi, The solvent effect on fluorescence spectrum, change of solute-solvent interaction during the lifetime of excited solute molecule, Bull. Chem. Soc. Jpn., 1955, 28, 690–691.

    Article  CAS  Google Scholar 

  52. L. Onsager, Electric moments of molecules in liquids, J. Am. Chem. Soc., 1936, 58, 1486–1493.

    Article  CAS  Google Scholar 

  53. S. Mukherjee, A. Chattopadhyay, A. Samanta, T. Soujanya, Dipole moment change of NBD group upon excitation studied using solvatochromic and quantum chemical approaches: Implications in membrane research, J. Phys. Chem., 1994, 98, 2809–2812.

    Article  CAS  Google Scholar 

  54. K. Okada, M. Yamaji, H. Shizuka, Laser photolysis investigation of induced quenching in photoreduction of benzophenone by alkylbenzenes and anisoles, J. Chem. Soc., Faraday Trans., 1998, 94, 861–866.

    Article  CAS  Google Scholar 

  55. B. Bhattacharya, A. Samanta, Laser flash photolysis study of the aminophthalimide derivatives: Elucidation of the nonradiative deactivation route, Chem. Phys. Lett., 2007, 442, 316–321.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Part of the present study was supported by Grant-in-Aid for Scientific Research (No. JP17K05976 and JP18H02043) from the JSPS. The authors thank the Micro-Elemental-Analysis Laboratory of Okayama University for the combustion analyses of the novel compounds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideki Okamoto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Fujii, M., Yamaji, M. et al. Fluorescence behaviour of 2-, 3- and 4-amino-1,8-naphthalimides: effects of the substitution positions of the amino functionality on the photophysical properties. Photochem Photobiol Sci 17, 1319–1328 (2018). https://doi.org/10.1039/c8pp00302e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00302e

Navigation