Skip to main content

Advertisement

Log in

White light generation using Förster resonance energy transfer between 3-hydroxyisoquinoline and Nile Red

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Simple composite films consisting of a polymer blended with organic emitters have the potential for broad-band “white” light emission that can be used for general lighting applications. In the present work, a simple mixture of 3-hydroxyisoquinoline (HIQ) with Nile Red (NR) in a polymeric matrix of polyvinyl alcohol (PVA) is used to generate white light through a non-radiative excitation energy transfer (NREET) mechanism. NREET between HIQ and NR doped in PVA films is investigated using a combination of steady state and time resolved fluorescence spectroscopic methods. It is observed that NR has very weak fluorescence in the PVA film upon excitation at 400 nm, but upon mixing NR with HIQ, sensitized emission of NR is observed with decreased emission of HIQ. The behavior of the sensitized emission of NR is consistent with Förster resonance energy transfer (FRET) between the donor HIQ and acceptor NR. By adjusting the relative fractions of HIQ and NR in the films, the extent of FRET could be regulated and the overall film emission color could be manipulated to enable overall “white” (CIE color coordinates 0.34, 0.38) emission. The films showed excellent photostability with 405 nm diode illumination, along with mechanical flexibility, suggesting good potential utility as a down converting element for lighting applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. C. Gather, A. Köhnen and K. Meerholz, Adv. Mater., 2010, 23, 233–248.

    Article  CAS  Google Scholar 

  2. L. Xiao, Z. Chen, B. Qu, J. Luo, S. Kong, Q. Gong and J. Kido, Adv. Mater., 2011, 23, 926–952.

    Article  CAS  PubMed  Google Scholar 

  3. S. Reineke, M. Thomschke, B. Lussem and K. Leo, Rev. Mod. Phys., 2013, 85, 1245–1293.

    Article  CAS  Google Scholar 

  4. Y. I. Park, O. Postupna, A. Zhugayevych, H. Shin, Y. S. Park, B. Kim, H. J. Yen, P. Cheruku, J. S. Martinez, J. W. Park, S. Tretiak and H. L. Wang, Chem. Sci., 2015, 6, 789–797.

    Article  CAS  PubMed  Google Scholar 

  5. K. C. Tang, M. J. Chang, T. Y. Lin, H. A. Pan, T. C. Fang, K. Y. Chen, W. Y. Hung, Y. H. Hsu and P. T. Chou, J. Am. Chem. Soc., 2011, 133, 17738–17745.

    Article  CAS  PubMed  Google Scholar 

  6. M. R. Molla and S. Ghosh, Chem.–Eur. J., 2012, 18, 1290–1294.

    Article  CAS  PubMed  Google Scholar 

  7. L. Xiong, W. Zhu, N. Wei, J. Li, W. Sun, X. Wu, J. Cao and Z. Wang, Org. Electron., 2013, 14, 32–37.

    Article  CAS  Google Scholar 

  8. V. Singh and A. K. Mishra, Sci. Rep., 2015, 5, 11118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. C. Vijayakumar, V. K. Praveen and A. Ajayaghosh, Adv. Mater., 2009, 21, 2059–2063.

    Article  CAS  Google Scholar 

  10. C. Giansante, G. Raffy, C. Schafer, H. Rahma, M. T. Kao, A. G. L. Olive and A. Del Guerzo, J. Am. Chem. Soc., 2011, 133, 316–325.

    Article  CAS  PubMed  Google Scholar 

  11. S. Mukherjee and P. Thilagar, Dyes Pigm., 2014, 110, 2–27.

    Article  CAS  Google Scholar 

  12. V. K. Praveen, C. Ranjith and N. Armaroli, Angew. Chem., Int. Ed., 2014, 53, 365–368.

    Article  CAS  Google Scholar 

  13. F. Laquai, Y. S. Park, J. J. Kim and T. Basché, Macromol. Rapid Commun., 2009, 30, 1203–1231.

    Article  CAS  PubMed  Google Scholar 

  14. S. T. Bailey, G. E. Lokey, M. S. Hanes, J. D. M. Shearer, J. B. McLafferty, G. T. Beaumont, T. T. Baseler, J. M. Layhue, D. R. Broussard, Y.-Z. Zhang and B. P. Wittmershaus, Sol. Energy Mater. Sol. Cells, 2007, 91, 67–75.

    Article  CAS  Google Scholar 

  15. R. Bose, M. Gonzalez, P. Jenkins, R. Walters, J. Morseman, M. Moss, C. McLain, P. Linsert, A. Buchtemann, A. J. Chatten and K. W. J. Barnham, in Photovoltaic Specialists Conference (PVSC), 2010 35th IEEE, 2010, pp. 000467–000470.

    Book  Google Scholar 

  16. S. K. Sugunan, C. Greenwald, M. F. Paige and R. P. Steer, J. Phys. Chem. A, 2013, 117, 5419–5427.

    Article  CAS  PubMed  Google Scholar 

  17. T. Forster, Z. Naturforsch, 1949, 49, 321–327.

    Article  Google Scholar 

  18. T. Forster, Discuss. Faraday Soc., 1959, 27, 7–17.

    Article  Google Scholar 

  19. D. A. Evans, G. F. Smith and M. A. Wahid, J. Chem. Soc. B, 1967, 590–595.

    Google Scholar 

  20. N. K. Joshi, P. Arora, S. Pant and H. C. Joshi, Photochem. Photobiol. Sci., 2014, 13, 929–938.

    Article  CAS  PubMed  Google Scholar 

  21. A. Cser, K. Nagy and L. Biczok, Chem. Phys. Lett., 2002, 360, 473–478.

    Article  CAS  Google Scholar 

  22. A. Y. Jee, S. Park, H. Kwon and M. Lee, Chem. Phys. Lett., 2009, 477, 112–115.

    Article  CAS  Google Scholar 

  23. Y. Lu, R. Porterfield, T. Thunder and M. F. Paige, Spectrochim. Acta, Part A, 2011, 78, 216–223.

    Article  CAS  Google Scholar 

  24. W. E. Moerner and D. P. Fromm, Rev. Sci. Instrum., 2003, 74, 3597–3619.

    Article  CAS  Google Scholar 

  25. J. Rumin, H. Bonnefond, B. S. Jean, C. Rouxel, A. Sciandra, O. Bernard, J. P. Cadoret and G. Bougaran, Biotechnol. Biofuels, 2015, 8, 1–16.

    Article  CAS  Google Scholar 

  26. Z. Yang, Y. He, J. H. Lee, W. S. Chae, W. X. Ren, J. H. Lee, C. Kang and J. S. Kim, Chem. Commun., 2014, 50, 11672–11675.

    Article  CAS  Google Scholar 

  27. A. Datta, D. Mandal, S. K. Pal and K. Bhattacharyya, J. Phys. Chem. B, 1997, 101, 10221–10225.

    Article  CAS  Google Scholar 

  28. A. Maciejewski and R. P. Steer, Chem. Phys. Lett., 1983, 100, 540–545.

    Article  CAS  Google Scholar 

  29. G. A. Crosby and J. N. Demas, J. Phys. Chem., 1971, 75, 991–1024.

    Article  CAS  Google Scholar 

  30. F. L. Arbeloa, P. R. Ojeda and I. L. Arbeloa, J. Lumin., 1989, 44, 105–112.

    Article  Google Scholar 

  31. S. N. Rempel, J. Fluoresc., 2006, 16, 483–485.

    Article  CAS  Google Scholar 

  32. A. S. R. Koti, M. M. G. Krishna and N. Periasamy, J. Phys. Chem. A, 2001, 105, 1767–1771.

    Article  CAS  Google Scholar 

  33. N. Kumar Joshi, R. Rautela, H. C. Joshi and S. Pant, J. Lumin., 2011, 131, 1550–1555.

    Article  CAS  Google Scholar 

  34. K. Suyal, N. K. Joshi, R. Rautela, H. C. Joshi and S. Pant, J. Photochem. Photobiol., A, 2010, 216, 51–58.

    Article  CAS  Google Scholar 

  35. K. A. Al-hassan and T. Azumi, Chem. Phys. Lett., 1988, 145, 49–54.

    Article  CAS  Google Scholar 

  36. K. A. Al-Hassan and T. Azumi, Chem. Phys. Lett., 1989, 163, 129–134.

    Article  CAS  Google Scholar 

  37. K. A. Al-Hassan and W. Rettig, Chem. Phys. Lett., 1986, 126, 273–279.

    Article  CAS  Google Scholar 

  38. M. Winnik and R. Loutfy, in Photophysical and Photochemical Tools in Polymer Science, Springer, Netherlands, 1986, pp. 429–448.

    Book  Google Scholar 

  39. A. J. Tilley, M. J. Kim, M. Chen and K. P. Ghiggino, Polymer, 2013, 54, 2865–2872.

    Article  CAS  Google Scholar 

  40. N. Sarkar, K. Das, D. N. Nath and K. Bhattacharyya, Langmuir, 1994, 10, 326–329.

    Article  CAS  Google Scholar 

  41. T. A. Fayed and S. E.-D. H. Etaiw, Spectrochim. Acta, Part A, 2006, 65, 366–371.

    Article  CAS  Google Scholar 

  42. Y. Marcus, J. Solution Chem., 1991, 20, 929–944.

    Article  CAS  Google Scholar 

  43. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd edn, 2006, p. 369.

    Book  Google Scholar 

  44. http://scientificpolymer.com/technical-library/refractive-index-of-polymers-by-index/

  45. S. K. Shevell, in The Science of Color, Elsevier Science Ltd, Amsterdam, 2nd edn, 2003, pp. 149–190.

    Book  Google Scholar 

  46. A. S. Kuznetsov, A. Nikitin, V. K. Tikhomirov, M. V. Shestakov and V. V. Moshchalkov, Appl. Phys. Lett., 2013, 102, 161916.

    Article  CAS  Google Scholar 

  47. T. Wang, V. Chirmanov, W. H. M. Chiu and P. V. Radovanovic, J. Am. Chem. Soc., 2013, 135, 14520–14523.

    Article  CAS  PubMed  Google Scholar 

  48. U. Scherf and E. J. W. List, Adv. Mater., 2002, 14, 477–487.

    Article  CAS  Google Scholar 

  49. S. Schmidbauer, A. Hohenleutner and B. Konig, Beilstein J. Org. Chem., 2013, 9, 2088–2096.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. B. Araoz, A. Carattino, D. Tauber, C. von Borczyskowski and P. F. Aramendia, J. Phys. Chem. A, 2014, 118, 10309–10317.

    Article  CAS  PubMed  Google Scholar 

  51. J. Kochany and R. J. Maguire, Chemosphere, 1994, 28, 1097–1110.

    Article  CAS  Google Scholar 

  52. I. Cozmuta, M. Blanco and W. A. Goddard, J. Phys. Chem. B, 2007, 111, 3151–3166.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ronald P. Steer or Matthew F. Paige.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c6pp00005c

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, N.K., Polgar, A.M., Steer, R.P. et al. White light generation using Förster resonance energy transfer between 3-hydroxyisoquinoline and Nile Red. Photochem Photobiol Sci 15, 609–617 (2016). https://doi.org/10.1039/c6pp00005c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c6pp00005c

Navigation