Skip to main content

Advertisement

Log in

Major inter-personal variation in the increase and maximal level of 25-hydroxy vitamin D induced by UVB

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Vitamin D influences skeletal health as well as other aspects of human health. Even when the most obvious sources of variation such as solar UVB exposure, latitude, season, clothing habits, skin pigmentation and ethnicity are selected for, variation in the serum 25-hydroxy vitamin D (25(OH)D) response to UVB remains extensive and unexplained. Our study assessed the inter-personal variation in 25(OH)D response to UVR and the maximal obtainable 25(OH)D level in 22 healthy participants (220 samples) with similar skin pigmentation during winter with negligible ambient UVB. Participants received identical UVB doses on identical body areas until a maximal level of 25(OH)D was reached. Major inter-personal variation in both the maximal obtainable UVB-induced 25(OH)D level (range 85–216 nmol l−1, mean 134 nmol l−1) and the total increase in 25(OH)D (range 3–139 nmol l−1, mean 48 nmol l−1) was found. A linear model including measured 25(OH)D baselines as personal intercepts explained 54.9% of the variation. By further including personal slopes in the model, as much as 90.8% of the variation could be explained. The explained variation constituted by personal differences in slopes thus represented 35.9%. Age, vitamin D receptor gene polymorphisms, height and constitutive skin pigmentation (a skin area not exposed to UVB) explained 15.1% of this variation. Despite elimination of most known external sources of variation, our study demonstrated inter-personal variation corresponding to an observed maximal difference of 136 nmol l−1 in the total increase of 25(OH)D and 131 nmol l−1 in the maximal level of 25(OH)D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. C. Ross, J. E. Manson, S. A. Abrams, J. F. Aloia, P. M. Brannon, S. K. Clinton, R. A. Durazo-Arvizu, J. C. Gallagher, R. L. Gallo, G. Jones, C. S. Kovacs, S. T. Mayne, C. J. Rosen and S. A. Shapses, The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know, J. Clin. Endocrinol. Metab., 2011, 96, 53–58.

    Article  CAS  PubMed  Google Scholar 

  2. S. Spedding, S. Vanlint, H. Morris and R. Scragg, Does vitamin D sufficiency equate to a single serum 25-hydroxyvitamin d level or are different levels required for non-skeletal diseases?, Nutrients, 2013, 5, 5127–5139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. T. D. Thacher and B. L. Clarke, Vitamin D insufficiency, Mayo Clin. Proc., 2011, 86, 50–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. M. F. Holick, T. C. Chen, Z. Lu and E. Sauter, Vitamin D and skin physiology: a D-lightful story, J. Bone Miner. Res., 2007, 22, V28–V33.

    Article  CAS  PubMed  Google Scholar 

  5. K. A. Kennel, M. T. Drake and D. L. Hurley, Vitamin D deficiency in adults: when to test and how to treat, Mayo Clin. Proc., 2010, 85, 752–757.

    Article  PubMed  PubMed Central  Google Scholar 

  6. M. K. Bogh, A. V. Schmedes, P. A. Philipsen, E. Thieden and H. C. Wulf, Vitamin D production after UVB exposure depends on baseline vitamin D and total cholesterol but not on skin pigmentation, J. Invest Dermatol., 2010, 26, 546–553.

    Article  CAS  Google Scholar 

  7. M. K. Bogh, A. V. Schmedes, P. A. Philipsen, E. Thieden and H. C. Wulf, Interdependence between body surface area and ultraviolet B dose in vitamin D production: a randomized controlled trial, Br. J. Dermatol., 2011, 164, 163–169.

    Article  CAS  PubMed  Google Scholar 

  8. M. D. Farrar, R. Kift, S. J. Felton, J. L. Berry, M. T. Durkin, D. Allan, A. Vail, A. R. Webb and L. E. Rhodes, Recommended summer sunlight exposure amounts fail to produce sufficient vitamin D status in UK adults of South Asian origin, Am. J. Clin. Nutr., 2011, 94, 1219–1224.

    Article  CAS  PubMed  Google Scholar 

  9. M. D. Farrar, A. R. Webb, R. Kift, M. T. Durkin, D. Allan, A. Herbert, J. L. Berry and L. E. Rhodes, Efficancy of a dose range of simulated sunlight exposures in raising vitamin D status in South Asian adults: implications for targeted guidance on sun exposure, Am. J. Clin. Nutr., 2013, 97, 1210–1216.

    Article  CAS  PubMed  Google Scholar 

  10. B. Petersen, P. Datta, P. A. Philipsen and H. C. Wulf, Sunscreen use and failures-on site observations on a sun-holiday, Photochem. Photobiol. Sci., 2013, 12, 190–196.

    Article  CAS  PubMed  Google Scholar 

  11. M. F. Holick, Vitamin D deficiency, N. Engl. J. Med., 2007, 357, 266–281.

    Article  CAS  PubMed  Google Scholar 

  12. W. J. Olds, A. R. McKinley, M. R. Moore and M. G. Kimlin, In vitro model of vitamin D3 (cholecalciferol) synthesis by UV radiation: dose–response relationships, J. Photochem. Photobiol., B, 2008, 93, 88–93.

    Article  CAS  Google Scholar 

  13. R. McKenzie, R. Scragg, B. Liley, P. Johnston, J. Wishart, A. Stewart and R. Prematunga, Serum 25-hydroxyvitamin-D responses to multiple UV exposures from solaria: inferences for exposure to sunlight, Photochem. Photobiol. Sci., 2012, 11, 1174–1185.

    Article  CAS  PubMed  Google Scholar 

  14. J. Lock-Andersen and H. C. Wulf, Seasonal variation of skin pigmentation, Acta Derm.–Venereol., 1997, 77, 219–221.

    CAS  PubMed  Google Scholar 

  15. M. F. Holick, L. Y. Matsuoka and J. Wortsman, Age, vitamin D, and solar ultraviolet, Lancet, 1989, 2, 1104–1105.

    Article  CAS  PubMed  Google Scholar 

  16. J. MacLaughlin and M. F. Holick, Aging decreases the capacity of human skin to produce vitamin D3, J. Clin. Invest., 1985, 76, 1536–1538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. P. R. Ebeling, Vitamin D and bone health: Epidemiologic studies, BoneKEy Rep., 2014, 3, 511.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. G. Jones, D. E. Prosser and M. Kaufmann, Cytochrome P450-mediated metabolism of vitamin D, J. Lipid Res., 2014, 55, 13–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. A. J. Berlanga-Taylor and J. C. Knight, An integrated approach to defining genetic and environmental determinants for major clinical outcomes involving vitamin d, Mol. Diagn. Ther., 2014, 18, 261–272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. G. P. Levin, C. Robinson-Cohen, I. H. de Boer, D. K. Houston, K. Lohman, Y. Liu, S. B. Kritchevsky, J. A. Cauley, T. Tanaka, L. Ferrucci, S. Bandinelli, K. V. Patel, E. Hagstrom, K. Michaelsson, H. Melhus, T. Wang, M. Wolf, B. M. Psaty, D. Siscovick and B. Kestenbaum, Genetic variants and associations of 25-hydroxyvitamin D concentrations with major clinical outcomes, JAMA, J. Am. Med. Assoc., 2012, 308, 1898–1905.

    Article  CAS  Google Scholar 

  21. T. J. Wang, F. Zhang, J. B. Richards, B. Kestenbaum, J. B. van Meurs, D. Berry, D. P. Kiel, E. A. Streeten, C. Ohlsson, D. L. Koller, L. Peltonen, J. D. Cooper, P. F. O’Reilly, D. K. Houston, N. L. Glazer, L. Vandenput, M. Peacock, J. Shi, F. Rivadeneira, M. I. McCarthy, P. Anneli, I. H. de Boer, M. Mangino, B. Kato, D. J. Smyth, S. L. Booth, P. F. Jacques, G. L. Burke, M. Goodarzi, C. L. Cheung, M. Wolf, K. Rice, D. Goltzman, N. Hidiroglou, M. Ladouceur, N. J. Wareham, L. J. Hocking, D. Hart, N. K. Arden, C. Cooper, S. Malik, W. D. Fraser, A. L. Hartikainen, G. Zhai, H. M. Macdonald, N. G. Forouhi, R. J. Loos, D. M. Reid, A. Hakim, E. Dennison, Y. Liu, C. Power, H. E. Stevens, L. Jaana, R. S. Vasan, N. Soranzo, J. Bojunga, B. M. Psaty, M. Lorentzon, T. Foroud, T. B. Harris, A. Hofman, J. O. Jansson, J. A. Cauley, A. G. Uitterlinden, Q. Gibson, M. R. Jarvelin, D. Karasi, D. S. Siscovick, M. J. Econs, S. B. Kritchevsky, J. C. Florez, J. A. Todd, J. Dupuis, E. Hypponen and T. D. Spector, Common genetic determinants of vitamin D insufficiency: a genome-wide association study, Lancet, 2010, 376, 180–188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. T. C. Chen, F. Chimeh, Z. Lu, J. Mathieu, K. S. Person, A. Zhang, N. Kohn, S. Martinello, R. Berkowitz and M. F. Holick, Factors that influence the cutaneous synthesis and dietary sources of vitamin D, Arch. Biochem. Biophys., 2007, 460, 213–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. T. L. Clemens, J. S. Adams, S. L. Henderson and M. F. Holick, Increased skin pigment reduces the capacity of skin to synthesise vitamin D3, Lancet, 1982, 1, 74–76.

    Article  CAS  PubMed  Google Scholar 

  24. M. F. Holick, J. A. MacLaughlin and S. H. Doppelt, Regulation of cutaneous previtamin D3 photosynthesis in man: skin pigment is not an essential regulator, Science, 1981, 211, 590–593.

    Article  CAS  PubMed  Google Scholar 

  25. A. R. Webb, Who, what, where and when-influences on cutaneous vitamin D synthesis, Prog. Biophys. Mol. Biol., 2006, 92, 17–25.

    Article  CAS  PubMed  Google Scholar 

  26. P. Meredith and J. Riesz, Radiative relaxation quantum yields for synthetic eumelanin, Photochem. Photobiol., 2004, 79, 211–216.

    Article  CAS  PubMed  Google Scholar 

  27. M. C. Chapuy, P. Preziosi, M. Maamer, S. Arnaud, P. Galan, S. Hercberg and P. J. Meunier, Prevalence of vitamin D insufficiency in an adult normal population, Osteoporosis Int., 1997, 7, 439–443.

    Article  CAS  Google Scholar 

  28. A. Shibli-Rahhal and B. Paturi, Variations in parathyroid hormone concentration in patients with low 25 hydroxyvitamin D, Osteoporosis Int., 2014, 25, 1931–1936.

    Article  CAS  Google Scholar 

  29. J. Aloia, M. Mikhail, R. Dhaliwal, A. Shieh, G. Usera, A. Stolberg, L. Ragolia and S. Islam, Free 25(OH)D and the Vitamin D Paradox in African Americans, J. Clin. Endocrinol. Metab., 2015, 100, 3356–3363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. C. E. Powe, C. Ricciardi, A. H. Berg, D. Erdenesanaa, G. Collerone, E. Ankers, J. Wenger, S. A. Karumanchi, R. Thadhani and I. Bhan, Vitamin D-binding protein modifies the vitamin D-bone mineral density relationship, J. Bone Miner. Res., 2011, 26, 1609–1616.

    Article  CAS  PubMed  Google Scholar 

  31. P. Yousefzadeh, S. A. Shapses and X. Wang, Vitamin D Binding Protein Impact on 25-Hydroxyvitamin D Levels under Different Physiologic and Pathologic Conditions, Int. J. Endocrinol., 2014, 2014, 981581.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. J. R. Delanghe, R. Speeckaert and M. M. Speeckaert, Behind the scenes of vitamin D binding protein: more than vitamin D binding, Best. Pract. Res., Clin. Endocrinol. Metab., 2015, 29, 773–786.

    Article  CAS  Google Scholar 

  33. A. R. Webb, L. Kline and M. F. Holick, Influence of season and latitude on the cutaneous synthesis of vitamin D3: exposure to winter sunlight in Boston and Edmonton will not promote vitamin D3 synthesis in human skin, J. Clin. Endocrinol. Metab., 1988, 67, 373–378.

    Article  CAS  PubMed  Google Scholar 

  34. A. Augustsson, U. Stierner, I. Rosdahl and M. Suurkula, Regional distribution of melanocytic naevi in relation to sun exposure, and site-specific counts predicting total number of naevi, Acta Derm.–Venereol., 1992, 72, 123–127.

    CAS  PubMed  Google Scholar 

  35. E. Thieden, P. A. Philipsen, J. Heydenreich and H. C. Wulf, UV radiation exposure related to age, sex, occupation, and sun behavior based on time-stamped personal dosimeter readings, Arch. Dermatol., 2004, 140, 197–203.

    Article  PubMed  Google Scholar 

  36. J. Heydenreich and H. C. Wulf, Miniature personal electronic UVR dosimeter with erythema response and time-stamped readings in a wristwatch, Photochem. Photobiol., 2005, 81, 1138–1144.

    Article  CAS  PubMed  Google Scholar 

  37. E. Thieden, M. S. Agren and H. C. Wulf, The wrist is a reliable body site for personal dosimetry of ultraviolet radiation, Photodermatol., Photoimmunol. Photomed., 2000, 16, 57–61.

    Article  CAS  Google Scholar 

  38. T. B. Fitzpatrick, The validity and practicality of sun-reactive skin types I through VI, Arch. Dermatol., 1988, 124, 869–871.

    Article  CAS  PubMed  Google Scholar 

  39. H. C. Wulf, Method and an apparatus for determining an individual’s ability to stand exposure to ultraviolet radiation, America Patent and Trademark Office, US Patent no. 4882598, 1986, 1–32

    Google Scholar 

  40. P. Datta, M. K. Bogh, P. Olsen, P. Eriksen, A. V. Schmedes, M. M. Grage, P. A. Philipsen and H. C. Wulf, Increase in serum 25-hydroxyvitamin-D(3) in humans after solar exposure under natural conditions compared to artificial UVB exposure of hands and face, Photochem. Photobiol. Sci., 2012, 11, 1817–1824.

    Article  CAS  PubMed  Google Scholar 

  41. M. F. Holick, J. A. MacLaughlin, M. B. Clark, S. A. Holick, J. T. Potts, Jr., R. R. Anderson, I. H. Blank, J. A. Parrish and P. Elias, Photosynthesis of previtamin D3 in human skin and the physiologic consequences, Science, 1980, 210, 203–205.

    Article  CAS  PubMed  Google Scholar 

  42. P. Armitage, G. Berry and J. N. S. Matthews, Statistical Methods in Medical Research, Wiley-Blackwell, 2001, ch. 11, pp. 312–377

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pameli Datta.

Additional information

Electronic supplementary information (ESI) available: DNA purification. Vitamin D receptor SNP typing. See DOI: 10.1039/c5pp00462d

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Datta, P., Philipsen, P.A., Olsen, P. et al. Major inter-personal variation in the increase and maximal level of 25-hydroxy vitamin D induced by UVB. Photochem Photobiol Sci 15, 536–545 (2016). https://doi.org/10.1039/c5pp00462d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c5pp00462d

Navigation