Skip to main content
Log in

Sun exposure and 25-hydroxyvitamin D3 levels in a community sample: Quantifying the association with electronic dosimeters

  • Original Article
  • Published:
Journal of Exposure Science & Environmental Epidemiology Submit manuscript

Abstract

There is uncertainty about the amount of sun exposure required to increase low blood 25-hydroxyvitamin D (25(OH)D3) levels, a possible disease risk factor. The study aimed to quantify the association between sun exposure and serum 25(OH)D3 concentrations in a multiethnic community sample (n=502) living in Auckland (37°S) and Dunedin (46°S), New Zealand, aged 18–85 years. They wore electronic ultraviolet dosimeters between March and November (autumn, winter and spring) for 8 weeks to record their sun exposure. This was converted to standard erythemal doses (SEDs), corrected for clothing to generate equivalent full-body exposures, SEDEFB. Blood samples were collected at the end of weeks 4 and 8 to measure 25(OH)D3. Median weekly SEDEFB was 0.33 during weeks 1–4 and 0.34 during weeks 5–8. Weekly exposures <0.5 SEDEFB during weeks 5–8 were associated with decreasing 25(OH)D3 concentrations at the end of week 8. There was a non-linear association between sun exposure and 25(OH)D3, with most of the increase in 25(OH)D3 being at exposures <2 SEDEFB per week. This finding suggests that vitamin D status is increased by regular small sun exposures (<2 SEDEFB per week), and that greater exposures result in only small additional increases in 25(OH)D3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Scragg R . Vitamin D and public health: An overview of recent research on common diseases and mortality in adulthood. Public Health Nutr 2011; 14: 1515–1532.

    Article  Google Scholar 

  2. Pittas AG, Chung M, Trikalinos T, Mitri J, Brendel M, Patel K et al. Systematic review: Vitamin D and cardiometabolic outcomes. Ann Intern Med 2010; 152: 307–314.

    Article  Google Scholar 

  3. Gandini S, Boniol M, Haukka J, Byrnes G, Cox B, Sneyd MJ et al. Meta-analysis of observational studies of serum 25-hydroxyvitamin D levels and colorectal, breast and prostate cancer and colorectal adenoma. Int J Cancer 2011; 128: 1414–1424.

    Article  CAS  Google Scholar 

  4. Ginde AA, Mansbach JM, Camargo CA Jr . Vitamin D, respiratory infections, and asthma. Curr Allergy Asthma Rep 2009; 9: 81–87.

    Article  CAS  Google Scholar 

  5. Holick MF . Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. Am J Clin Nutr 2004; 80: 1678S–1688S.

    Article  CAS  Google Scholar 

  6. Samanek AJ, Croager EJ, Giesfor Skin Cancer Prevention P Milne E, Prince R, McMichael AJ et al. Estimates of beneficial and harmful sun exposure times during the year for major Australian population centres. Med J Aust 2006; 184: 338–341.

    PubMed  Google Scholar 

  7. Webb AR, Engelsen O . Calculated ultraviolet exposure levels for a healthy vitamin D status. Photochem Photobiol 2006; 82: 1697–1703.

    Article  CAS  Google Scholar 

  8. Fioletov VE, McArthur LJ, Mathews TW, Marrett L . Estimated ultraviolet exposure levels for a sufficient vitamin D status in North America. J Photochem Photobiol B 2010; 100: 57–66.

    Article  CAS  Google Scholar 

  9. Terushkin V, Bender A, Psaty EL, Engelsen O, Wang SQ, Halpern AC . Estimated equivalency of vitamin D production from natural sun exposure versus oral vitamin D supplementation across seasons at two US latitudes. J Am Acad Dermatol 2010; 62: 929 e921–929 e929.

    Google Scholar 

  10. Stalgis-Bilinski KL, Boyages J, Salisbury EL, Dunstan CR, Henderson SI, Talbot PL . Burning daylight: Balancing vitamin D requirements with sensible sun exposure. Med J Aust 2011; 194: 345–348.

    PubMed  Google Scholar 

  11. Holick MF . Vitamin D: The underappreciated D-lighful hormone that is important for skeletal and cellular health. Curr Opin Endocrinol Diabetes Obes 2002; 9: 87–98.

    Article  CAS  Google Scholar 

  12. Armas LA, Dowell S, Akhter M, Duthuluru S, Huerter C, Hollis BW et al. Ultraviolet-B radiation increases serum 25-hydroxyvitamin D levels: The effect of UVB dose and skin color. J Am Acad Dermatol 2007; 57: 588–593.

    Article  Google Scholar 

  13. Thieden E, Jorgensen HL, Jorgensen NR, Philipsen PA, Wulf HC . Sunbed radiation provokes cutaneous vitamin D synthesis in humans—a randomized controlled trial. Photochem Photobiol 2008; 84: 1487–1492.

    Article  CAS  Google Scholar 

  14. Bogh MK, Schmedes AV, Philipsen PA, Thieden E, Wulf HC . Vitamin D production after UVB exposure depends on baseline vitamin D and total cholesterol but not on skin pigmentation. J Invest Dermatol 2010; 130: 546–553.

    Article  CAS  Google Scholar 

  15. Cicarma E, Mork C, Porojnicu AC, Juzeniene A, Tam TT, Dahlback A et al. Influence of narrowband UVB phototherapy on vitamin D and folate status. Exp Dermatol 2010; 19: e67–e72.

    Article  Google Scholar 

  16. Rhodes LE, Webb AR, Fraser HI, Kift R, Durkin MT, Allan D et al. Recommended summer sunlight exposure levels can produce sufficient (&gt; or =20 ng ml (−1)) but not the proposed optimal (&gt; or =32 ng ml (−1)) 25(OH)D levels at UK latitudes. J Invest Dermatol 2010; 130: 1411–1418.

    Article  CAS  Google Scholar 

  17. Vahavihu K, Ylianttila L, Kautiainen H, Viljakainen H, Lamberg-Allardt C, Hasan T et al. Narrowband ultraviolet B course improves vitamin D balance in women in winter. Br J Dermatol 2010; 162: 848–853.

    Article  CAS  Google Scholar 

  18. Bogh MK, Schmedes AV, Philipsen PA, Thieden E, Wulf HC . Vitamin D production depends on ultraviolet-B dose but not on dose rate: A randomized controlled trial. Exp Dermatol 2011; 20: 14–18.

    Article  CAS  Google Scholar 

  19. Farrar MD, Kift R, Felton SJ, Berry JL, Durkin MT, Allan D et al. Recommended summer sunlight exposure amounts fail to produce sufficient vitamin D status in UK adults of South Asian origin. Am J Clin Nutr 2011; 94: 1219–1224.

    Article  CAS  Google Scholar 

  20. Bogh MK, Schmedes AV, Philipsen PA, Thieden E, Wulf HC . A small suberythemal ultraviolet B dose every second week is sufficient to maintain summer vitamin D levels: A randomized controlled trial. Br J Dermatol 2012; 166: 430–433.

    Article  CAS  Google Scholar 

  21. McKenzie R, Scragg R, Liley B, Johnston P, Wishart J, Stewart A et al. Serum 25-hydroxyvitamin-D responses to multiple UV exposures from solaria: Inferences for exposure to sunlight. Photochem Photobiol Sci 2012; 11: 1174–1185.

    Article  CAS  Google Scholar 

  22. McKenzie R, Liley B, Johnston P, Scragg R, Stewart A, Reeder AI et al. Small doses from artificial UV sources elucidate the photo-production of vitamin D. Photochem Photobiol Sci 2013; 12: 1726–1737.

    Article  CAS  Google Scholar 

  23. Libon F, Cavalier E, Nikkels AF . Skin color is relevant to vitamin D synthesis. Dermatology 2013; 227: 250–254.

    Article  CAS  Google Scholar 

  24. Brustad M, Alsaker E, Engelsen O, Aksnes L, Lund E . Vitamin D status of middle-aged women at 65–71 degrees N in relation to dietary intake and exposure to ultraviolet radiation. Public Health Nutr 2004; 7: 327–335.

    Article  CAS  Google Scholar 

  25. Edvardsen K, Brustad M, Engelsen O, Aksnes L . The solar UV radiation level needed for cutaneous production of vitamin D3 in the face. A study conducted among subjects living at a high latitude (68 degrees N). Photochem Photobiol Sci 2007; 6: 57–62.

    Article  CAS  Google Scholar 

  26. Vahavihu K, Ylianttila L, Salmelin R, Lamberg-Allardt C, Viljakainen H, Tuohimaa P et al. Heliotherapy improves vitamin D balance and atopic dermatitis. Br J Dermatol 2008; 158: 1323–1328.

    Article  CAS  Google Scholar 

  27. Greenfield JA, Park PS, Farahani E, Malik S, Vieth R, McFarlane NA et al. Solar ultraviolet-B radiation and vitamin D: A cross-sectional population-based study using data from the 2007 to 2009 Canadian Health Measures Survey. BMC Public Health 2012; 12: 660.

    Article  CAS  Google Scholar 

  28. Freedman DM, Cahoon EK, Rajaraman P, Major JM, Doody MM, Alexander BH et al. Sunlight and other determinants of circulating 25-hydroxyvitamin D levels in black and white participants in a nationwide U.S. study. Am J Epidemiol 2013; 177: 180–192.

    Article  Google Scholar 

  29. Lucas RM, Ponsonby AL, Dear K, Valery PC, Taylor B, van der Mei I et al. Vitamin D status: Multifactorial contribution of environment, genes and other factors in healthy Australian adults across a latitude gradient. J Steroid Biochem Mol Biol 2013; 136: 300–308.

    Article  CAS  Google Scholar 

  30. Nair-Shalliker V, Clements M, Fenech M, Armstrong BK . Personal sun exposure and serum 25-hydroxy vitamin D concentrations. Photochem Photobiol 2013; 89: 208–214.

    Article  CAS  Google Scholar 

  31. Webb AR, Kift R, Durkin MT, O’Brien SJ, Vail A, Berry JL et al. The role of sunlight exposure in determining the vitamin D status of the U.K. white adult population. Br J Dermatol 2010; 163: 1050–1055.

    Article  CAS  Google Scholar 

  32. Kimlin MG, Lucas RM, Harrison SL, van der Mei I, Armstrong BK, Whiteman DC et al. The contributions of solar ultraviolet radiation exposure and other determinants to serum 25-hydroxyvitamin D concentrations in Australian adults: The AusD Study. Am J Epidemiol 2014; 179: 864–874.

    Article  Google Scholar 

  33. Datta P, Bogh MK, Olsen P, Eriksen P, Schmedes AV, Grage MM et al. Increase in serum 25-hydroxyvitamin-D3 in humans after solar exposure under natural conditions compared to artificial UVB exposure of hands and face. Photochem Photobiol Sci 2012; 11: 1817–1824.

    Article  CAS  Google Scholar 

  34. Thieden E, Philipsen PA, Heydenreich J, Wulf HC . Vitamin D level in summer and winter related to measured UVR exposure and behavior. Photochem Photobiol 2009; 85: 1480–1484.

    Article  CAS  Google Scholar 

  35. Grobner M, Grobner J, Hulsen G . Quantifying UV exposure, vitamin D status and their relationship in a group of high school students in an alpine environment. Photochem Photobiol Sci 2015; 14: 352–357.

    Article  CAS  Google Scholar 

  36. Fitzpatrick TB . The validity and practicality of sun-reactive skin types I through VI. Arch Dermatol 1988; 124: 869–871.

    Article  CAS  Google Scholar 

  37. Pierard GE . EEMCO guidance for the assessment of skin colour. J Eur Acad Dermatol Venereol 1998; 10: 1–11.

    CAS  PubMed  Google Scholar 

  38. Del Bino S, Sok J, Bessac E, Bernerd F . Relationship between skin response to ultraviolet exposure and skin color type. Pigment Cell Res 2009; 19: 606–614.

    Article  Google Scholar 

  39. Nessvi S, Johansson L, Jopson J, Stewart A, Reeder A, McKenzie R et al. Association of 25-hydroxyvitamin D(3) levels in adult New Zealanders with ethnicity, skin colour and self-reported skin sensitivity to sun exposure. Photochem Photobiol 2011; 87: 1173–1178.

    Article  CAS  Google Scholar 

  40. Mosteller RD . Simplified calculation of body-surface area. N Engl J Med 1987; 317: 1098.

    CAS  PubMed  Google Scholar 

  41. Bodeker GE, Shiona H, Scott-Weekly R, Oltmanns K, King P, Chisholm H et al. UV Atlas Version 2: What You Get for your Money. Royal Society of New Zealand: Wellington, New Zealand. 2006.

    Google Scholar 

  42. Diffey BL, Jansen CT, Urbach F, Wulf HC . The standard erythema dose: A new photobiological concept. Photodermatol Photoimmunol Photomed 1997; 13: 64–66.

    Article  CAS  Google Scholar 

  43. Maunsell Z, Wright DJ, Rainbow SJ . Routine isotope-dilution liquid chromatography-tandem mass spectrometry assay for simultaneous measurement of the 25-hydroxy metabolites of vitamins D2 and D3. Clin Chem 2005; 51: 1683–1690.

    Article  CAS  Google Scholar 

  44. Allen M, McKenzie R . Enhanced UV exposure on a ski-field compared with exposures at sea level. Photochem Photobiol Sci 2005; 4: 429–437.

    Article  CAS  Google Scholar 

  45. Liley AJ, Liley JB. Analysis of dosimeter badge data. In: McKenzie R (ed). UV Radiation and its Effects—An Update 2010. NIWA: Queenstown, New Zealand. 2010, pp 88–89.

    Google Scholar 

  46. Hettiaratchy S, Papini R . Initial management of a major burn: II—assessment and resuscitation. BMJ 2004; 329: 101–103.

    Article  Google Scholar 

  47. Livesey J, Elder P, Ellis MJ, McKenzie R, Liley B, Florkowski C . Seasonal variation in vitamin D levels in the Canterbury, New Zealand population in relation to available UV radiation. N Z Med J 2007; 120: U2733.

    PubMed  Google Scholar 

  48. Neuhaus JM, Kalbfleisch JD . Between- and within-cluster covariate effects in the analysis of clustered data. Biometrics 1998; 54: 638–645.

    Article  CAS  Google Scholar 

  49. Liu Y, Ono M, Yu D, Wang Y, Yu J . Individual solar-UV doses of pupils and undergraduates in China. J Exp Sci Environ Epidemiol 2006; 16: 531–537.

    Article  CAS  Google Scholar 

  50. Serrano MA, Canada J, Moreno JC,, Members of the Valencia Solar Radiation Research G. Solar UV exposure in construction workers in Valencia, Spain. J Exp Sci Environ Epidemiol 2013; 23: 525–530.

    Article  Google Scholar 

  51. Seckmeyer G, Klingebiel M, Riechelmann S, Lohse I, McKenzie RL, Liley JB et al. A critical assessment of two types of personal UV dosimeters. Photochem Photobiol 2012; 88: 215–222.

    Article  CAS  Google Scholar 

  52. Bolland MJ, Chiu WW, Davidson JS, Grey A, Bacon C, Gamble GD et al. The effects of seasonal variation of 25-hydroxyvitamin D on diagnosis of vitamin D insufficiency. N Z Med J 2008; 121: 63–74.

    PubMed  Google Scholar 

  53. Ministry of Health Vitamin D Status of New Zealand Adults: Findings from the 2008/09 New Zealand Adult Nutrition Survey. Ministry of Health: Wellington, New Zealand. 2012.

Download references

Acknowledgements

The research was supported by the Health Research Council (HRC) of New Zealand (grant number 07-275), and the Cancer Society of New Zealand (to AIR). We thank Vanessa Hammond, Jan Jopson and Kenneth Gibbs for data collection and Nathalie Huston for research support in Dunedin, and Debbie Raroa and Carol Taylor for data collection and Sandar Min for data processing in Auckland. James Liley assisted with processing of missing data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert K R Scragg.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scragg, R., Stewart, A., McKenzie, R. et al. Sun exposure and 25-hydroxyvitamin D3 levels in a community sample: Quantifying the association with electronic dosimeters. J Expo Sci Environ Epidemiol 27, 471–477 (2017). https://doi.org/10.1038/jes.2016.51

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jes.2016.51

  • Springer Nature America, Inc.

Keywords

This article is cited by

Navigation