Skip to main content
Log in

YM155, a small molecule inhibitor of survivin expression, sensitizes cancer cells to hypericin-mediated photodynamic therapy

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Photodynamic therapy (PDT) represents a rapidly developing alternative treatment for various types of cancers. Although considered highly effective, cancer cells can exploit various mechanisms, including the upregulation of apoptosis inhibitors, to overcome the cytotoxic effect of PDT. Survivin, a member of the inhibitor of apoptosis protein family, is known to play a critical role in cancer progression and therapeutic resistance and therefore represents a potential therapeutic target. The aim of this study was to investigate whether YM155, a small molecule inhibitor of survivin expression, can potentiate the cytotoxic effect of hypericin-mediated PDT (HY-PDT). Accordingly, two cell lines resistant to HY-PDT, HT-29 (colorectal adenocarcinoma) and A549 (lung adenocarcinoma), were treated either with HY-PDT alone or in combination with YM155. The efficacy of different treatment regimens was assessed by MTT assay, flow cytometry analysis of metabolic activity, viability, phosphatidylserine externalisation, mitochondrial membrane potential and caspase-3 activity and immunoblotting for the cleavage of poly (ADP-ribose) polymerase (PARP). Here we show for the first time that the repression of survivin expression by YM155 is effective in sensitizing HT-29 and A549 cells to HY-PDT, as measured by the decrease in cell viability and induction of apoptosis. Combined treatment with hypericin and YM155 led to a more severe dissipation of the mitochondrial membrane potential and caused an increase in caspase-3 activation and subsequent PARP cleavage. Our results demonstrate that the repression of survivin expression by YM155 potentially represents a novel alternative strategy to increase the efficacy of HY-PDT in cancer cells that are otherwise weakly responsive or non-responsive to treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Hanahan and R. A. Weinberg, Hallmarks of cancer: the next generation, Cell, 2011, 1445, 646–674.

    Article  CAS  PubMed  Google Scholar 

  2. T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan and Q. Peng, Photodynamic therapy, J. Natl. Cancer Inst., 1998, 9012, 889–905.

    Article  CAS  PubMed  Google Scholar 

  3. S. Onoue, Y. Seto, M. Ochi, R. Inoue, H. Ito, T. Hatano and S. Yamada, In vitro photochemical and phototoxicological characterization of major constituents in St. John’s Wort (Hypericum perforatum) extracts, Phytochemistry, 2011, 7214–15, 1814–1820.

    Article  CAS  PubMed  Google Scholar 

  4. C. Bernal, A. O. Ribeiro, G. P. Andrade and J. R. Perussi, Photodynamic efficiency of hypericin compared with chlorin and hematoporphyrin derivatives in HEp-2 and Vero epithelial cell lines, Photodiagn. Photodyn. Ther., 2015, 122, 176–185.

    Article  CAS  Google Scholar 

  5. A. Karioti and A. R. Bilia, Hypericins as potential leads for new therapeutics, Int. J. Mol. Sci., 2010, 112, 562–594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. A. Casas, G. Di Venosa, T. Hasan and B. Al, Mechanisms of resistance to photodynamic therapy, Curr. Med. Chem., 2011, 1816, 2486–2515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. D. C. Altieri, Survivin, cancer networks and pathway-directed drug discovery, Nat. Rev. Cancer, 2008, 81, 61–70.

    Article  CAS  PubMed  Google Scholar 

  8. M. S. Coumar, F. Y. Tsai, J. R. Kanwar, S. Sarvagalla and C. H. Cheung, Treat cancers by targeting survivin: just a dream or future reality?, Cancer Treat. Rev., 2013, 397, 802–811.

    Article  CAS  PubMed  Google Scholar 

  9. Q. Cheng, X. Ling, A. Haller, T. Nakahara, K. Yamanaka, A. Kita, H. Koutoku, M. Takeuchi, M. G. Brattain and F. Li, Suppression of survivin promoter activity by YM155 involves disruption of Sp1-DNA interaction in the survivin core promoter, Int. J. Biochem. Mol. Biol., 2012, 32, 179–197.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. T. Nakahara, A. Kita, K. Yamanaka, M. Mori, N. Amino, M. Takeuchi, F. Tominaga, I. Kinoyama, A. Matsuhisa, M. Kudou and M. Sasamata, Broad spectrum and potent antitumor activities of YM155, a novel small-molecule survivin suppressant, in a wide variety of human cancer cell lines and xenograft models, Cancer Sci., 2011, 1023, 614–621.

    Article  CAS  PubMed  Google Scholar 

  11. T. Iwasa, I. Okamoto, K. Takezawa, K. Yamanaka, T. Nakahara, A. Kita, H. Koutoku, M. Sasamata, E. Hatashita, Y. Yamada, K. Kuwata, M. Fukuoka and K. Nakagawa, Marked anti-tumour activity of the combination of YM155, a novel survivin suppressant, and platinum-based drugs, Br. J. Cancer, 2010, 1031, 36–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. J. Chen, C. A. Pise-Masison, J. H. Shih, J. C. Morris, J. E. Janik, K. C. Conlon, A. Keating and T. A. Waldmann, Markedly additive antitumor activity with the combination of a selective survivin suppressant YM155 and alemtuzumab in adult T-cell leukemia, Blood, 2013, 12111, 2029–2037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. M. Pennati, S. Sbarra, M. De Cesare, A. Lopergolo, S. L. Locatelli, E. Campi, M. G. Daidone, C. Carlo-Stella, A. M. Gianni and N. Zaffaroni, YM155 sensitizes triple-negative breast cancer to membrane-bound TRAIL through p38 MAPK- and CHOP-mediated DR5 upregulation, Int. J. Cancer, 2015, 1362, 299–309.

    Article  CAS  PubMed  Google Scholar 

  14. T. C. Chou and P. Talalay, Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors, Adv. Enzyme Regul., 1984, 22, 27–55.

    Article  CAS  PubMed  Google Scholar 

  15. J. Mikes, J. Kleban, V. Sackova, V. Horvath, E. Jamborova, A. Vaculova, A. Kozubik, J. Hofmanova and P. Fedorocko, Necrosis predominates in the cell death of human colon adenocarcinoma HT-29 cells treated under variable conditions of photodynamic therapy with hypericin, Photochem. Photobiol. Sci., 2007, 67, 758–766.

    Article  CAS  PubMed  Google Scholar 

  16. Y. Oh, M. Swierczewska, T. H. Kim, S. M. Lim, H. N. Eom, J. H. Park, D. H. Na, K. Kim, K. C. Lee, M. G. Pomper and S. Lee, Delivery of tumor-homing TRAIL sensitizer with long-acting TRAIL as a therapy for TRAIL-resistant tumors, J. Controlled Release, 2015, 220Pt B, 671–681.

    Article  CAS  Google Scholar 

  17. A. Y. Kim, J. H. Kwak, N. K. Je, Y. H. Lee and Y. S. Jung, Epithelial-mesenchymal Transition is Associated with Acquired Resistance to 5-Fluorocuracil in HT-29 Colon Cancer Cells, Toxicol. Res., 2015, 312, 151–156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. G. Yang, O. Jiang, D. Ling, X. Jiang, P. Yuan, G. Zeng, J. Zhu, J. Tian, Y. Weng and D. Wu, MicroRNA-522 reverses drug resistance of doxorubicin-induced HT29 colon cancer cell by targeting ABCB5, Mol. Med. Rep., 2015, 123, 3930–3936.

    Article  CAS  PubMed  Google Scholar 

  19. A. Gines, S. Bystrup, V. Ruiz de Porras, C. Guardia, E. Musulen, A. Martinez-Cardus, J. L. Manzano, L. Layos, A. Abad, E. Martinez-Balibrea, PKM2 Subcellular Localization Is Involved in Oxaliplatin Resistance Acquisition in HT29 Human Colorectal Cancer Cell Lines, PLoS One, 2015, 105, e0123830.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. M. Zhao, H. Li, X. Bu, C. Lei, Q. Fang and Z. Hu, Quantitative Proteomic Analysis of Cellular Resistance to the Nanoparticle Abraxane, ACS Nano, 2015, 910, 10099–10112.

    Article  CAS  PubMed  Google Scholar 

  21. H. Li, P. Zhang, X. Sun, Y. Sun, C. Shi, H. Liu and X. Liu, MicroRNA-181a regulates epithelial-mesenchymal transition by targeting PTEN in drug-resistant lung adenocarcinoma cells, Int. J. Oncol., 2015, 474, 1379–1392.

    Article  CAS  PubMed  Google Scholar 

  22. T. Kwon, J. K. Rho, J. C. Lee, Y. H. Park, H. J. Shin, S. Cho, Y. K. Kang, B. Y. Kim, D. Y. Yoon and D. Y. Yu, An important role for peroxiredoxin II in survival of A549 lung cancer cells resistant to gefitinib, Exp. Mol. Med., 2015, 47, e165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. W. H. Chiu, W. C. Su, C. L. Li, C. L. Chen and C. F. Lin, An increase in glucosylceramide synthase induces Bcl-xL-mediated cell survival in vinorelbine-resistant lung adenocarcinoma cells, Oncotarget, 2015, 624, 20513–20524.

    Article  PubMed  PubMed Central  Google Scholar 

  24. L. Mikesova, J. Mikes, J. Koval, K. Gyuraszova, L. Culka, J. Vargova, B. Valekova and P. Fedorocko, Conjunction of glutathione level, NAD(P)H/FAD redox status and hypericin content as a potential factor affecting colon cancer cell resistance to photodynamic therapy with hypericin, Photodiagn. Photodyn. Ther., 2013, 104, 470–483.

    Article  CAS  Google Scholar 

  25. P. Solar, I. Cavarga, J. Hofmanova, M. Cekanova-Figurova, P. Miskovsky, P. Brezani, G. Hrckova, A. Kozubik and P. Fedorocko, Effect of acetazolamide on hypericin photocytotoxicity, Planta Med., 2002, 687, 658–660.

    Article  CAS  PubMed  Google Scholar 

  26. A. Ferrario, N. Rucker, S. Wong, M. Luna and C. J. Gomer, Survivin, a member of the inhibitor of apoptosis family, is induced by photodynamic therapy and is a target for improving treatment response, Cancer Res., 2007, 6710, 4989–4995.

    Article  CAS  PubMed  Google Scholar 

  27. R. Bhowmick and A. W. Girotti, Cytoprotective signaling associated with nitric oxide upregulation in tumor cells subjected to photodynamic therapy-like oxidative stress, Free Radical Biol. Med., 2013, 57, 39–48.

    Article  CAS  Google Scholar 

  28. I. S. Cogno, N. B. Vittar, M. J. Lamberti and V. A. Rivarola, Optimization of photodynamic therapy response by survivin gene knockdown in human metastatic breast cancer T47D cells, J. Photochem. Photobiol., B, 2011, 1043, 434–443.

    Article  CAS  Google Scholar 

  29. M. Carmena, M. Wheelock, H. Funabiki and W. C. Earnshaw, The chromosomal passenger complex (CPC): from easy rider to the godfather of mitosis, Nat. Rev. Mol. Cell Biol., 2012, 1312, 789–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. E. V. Froehlich, B. Rinner, A. J. Deutsch, K. Meditz, H. Knausz, K. Troppan, S. Scheipl, C. Wibmer, A. Leithner, B. Liegl and B. Lohberger, Examination of survivin expression in 50 chordoma specimens–A histological and in vitro study, J. Orthop. Res., 2015, 335, 771–778.

    Article  CAS  PubMed  Google Scholar 

  31. D. Dai, Y. Liang, Z. Xie, J. Fu, Y. Zhang and Z. Zhang, Survivin deficiency induces apoptosis and cell cycle arrest in HepG2 hepatocellular carcinoma cells, Oncol. Rep., 2012, 273, 621–627.

    CAS  PubMed  Google Scholar 

  32. T. Wang, J. Wei, X. Qian, Y. Ding, L. Yu and B. Liu, Gambogic acid, a potent inhibitor of survivin, reverses docetaxel resistance in gastric cancer cells, Cancer Lett., 2008, 2622, 214–222.

    Article  CAS  PubMed  Google Scholar 

  33. M. Blank, M. Mandel, Y. Keisari, D. Meruelo and G. Lavie, Enhanced ubiquitinylation of heat shock protein 90 as a potential mechanism for mitotic cell death in cancer cells induced with hypericin, Cancer Res., 2003, 6323, 8241–8247.

    CAS  PubMed  Google Scholar 

  34. A. Vantieghem, Y. Xu, Z. Assefa, J. Piette, J. R. Vandenheede, W. Merlevede, P. A. De Witte and P. Agostinis, Phosphorylation of Bcl-2 in G2/M phase-arrested cells following photodynamic therapy with hypericin involves a CDK1-mediated signal and delays the onset of apoptosis, J. Biol. Chem., 2002, 27740, 37718–37731.

    Article  CAS  PubMed  Google Scholar 

  35. X. Wang, Y. Guo, S. Yang, C. Wang, X. Fu, J. Wang, Y. Mao, J. Zhang and Y. Li, Cellular and molecular mechanisms of photodynamic hypericin therapy for nasopharyngeal carcinoma cells, J. Pharmacol. Exp. Ther., 2010, 3343, 847–853.

    Article  CAS  PubMed  Google Scholar 

  36. B. Krammer and T. Verwanger, Molecular response to hypericin-induced photodamage, Curr. Med. Chem., 2012, 196, 793–798.

    Article  CAS  PubMed  Google Scholar 

  37. S. Fulda and D. Kogel, Cell death by autophagy: emerging molecular mechanisms and implications for cancer therapy, Oncogene, 2015, 3440, 5105–5113.

    Article  CAS  PubMed  Google Scholar 

  38. R. J. Kelly, A. Lopez-Chavez, D. Citrin, J. E. Janik and J. C. Morris, Impacting tumor cell-fate by targeting the inhibitor of apoptosis protein survivin, Mol. Cancer, 2011, 10, 35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Y. Yu, X. Zhao, Y. Zhang, Y. Kang, J. Wang and Y. Liu, Antitumor activity of YM155, a selective survivin suppressant, in combination with cisplatin in hepatoblastoma, Oncol. Rep., 2015, 341, 407–414.

    Article  CAS  PubMed  Google Scholar 

  40. R. Mir, E. Stanzani, F. Martinez-Soler, A. Villanueva, A. Vidal, E. Condom, J. Ponce, J. Gil, A. Tortosa, P. Gimenez-Bonafe, YM155 sensitizes ovarian cancer cells to cisplatin inducing apoptosis and tumor regression, Gynecol. Oncol., 2014, 1321, 211–220.

    Article  CAS  PubMed  Google Scholar 

  41. H. Liang, L. Zhang, R. Xu and X. L. Ju, Silencing of survivin using YM155 induces apoptosis and chemosensitization in neuroblastomas cells, Rev. Eur. Sci. Med. Pharmacol., 2013, 1721, 2909–2915.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Fedoročko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gyurászová, K., Mikeš, J., Halaburková, A. et al. YM155, a small molecule inhibitor of survivin expression, sensitizes cancer cells to hypericin-mediated photodynamic therapy. Photochem Photobiol Sci 15, 812–821 (2016). https://doi.org/10.1039/c5pp00438a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c5pp00438a

Navigation