Skip to main content
Log in

Role of Cr(iii) deposition during the photocatalytic transformation of hexavalent chromium and citric acid over commercial TiO2 samples

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Removal of Cr(vi) and citric acid (Cit) by heterogeneous photocatalytic Cr(vi) transformation under UV light over two commercial TiO2 samples (1 g L-1), Evonik P25 and Hombikat UV100, was studied at pH 2 and Cr(vi) concentrations between 0.2 and 3 mM, with a fixed [Cit]0/[Cr(vi)]0 molar ratio (MR) of 2.5. In both cases, up to complete Cr(vi) removal, the temporal profiles of Cr(vi) and Cit were well adjusted to a pseudo-first order rate law with the same rate constant, evidencing that Cr(vi) removal controls the kinetics of the system. Once Cr(vi) is fully removed, Cit degradation continues with a Langmuir-Hinshelwood behaviour. In all cases, the rate constants decreased with increasing [Cr(vi)]0, and time resolved microwave conductivity (TRMC) measurements revealed that this was due to an increasing retention of Cr(iii) on the surface of the photocatalysts, which reduces the lifetime of the electrons. Both kinetic experiments and TRMC measurements confirm that UV100 is not only more efficient than P25 for Cr(vi) and Cit removal, but it is also less influenced by the poisoning of the surface, consistent with its larger specific area. The use of Cit as the sacrificial agent improves the rate and efficiency of the photocatalytic Cr(vi) removal, and also the stability of the photocatalyst by preventing Cr(iii) deposition, due to the formation of soluble Cr(iii)-complexes, envisaged as a general result of the presence of oligocarboxylic acids in the photocatalytic Cr(vi) system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. J. A. Izbicki, T. D. Bullen, P. Martin, B. Schroth, Appl. Geochem., 2012, 27, 841.

    Article  CAS  Google Scholar 

  2. R. Dai, J. Liu, C. Yu, J. Liu, Y. Lan, B. Deng, Environ. Sci. Technol., 2010, 44, 6959.

    Article  CAS  Google Scholar 

  3. M. Owlad, M. K. Aroua, W. A. W. Daud, S. Baroutian, Water, Air, Soil Pollut., 2009, 200, 59.

    Article  CAS  Google Scholar 

  4. WHO, Guidelines for drinking-water quality, World Health Organization, Geneva, 4th edn, 2011, p. 340. Available at: http://whqlibdoc.who.int/publications/2011/9789241548151_eng.pdf (last accessed: 10 August 2013)

    Google Scholar 

  5. Kooragang Island Orica chemical leak. Available at: http://www.parliament.nsw.gov.au/prod/parlment/committee.nsf/0/2aaffe5684a88ac6ca2579ac007c4430/$FILE/120223%20Orica%20Report.pdf (last accessed: 7 November 2015)

  6. C. Vasilatos, I. Megremi, M. Economou-Eliopoulos, I. Mitsis, Hell. J. Geosci., 2008, 43, 57.

    Google Scholar 

  7. C. E. Barrera-Díaz, V. Lugo-Lugo, B. Bilyeu, J. Hazard. Mater., 2012, 223-224, 1.

    Article  Google Scholar 

  8. M. I. Litter, Appl. Catal., B, 1999, 23, 89.

    Article  CAS  Google Scholar 

  9. M. I. Litter, Adv. Chem. Eng., 2009, 36, 37.

    Article  CAS  Google Scholar 

  10. M. I. Litter and N. Quici, New advances of heterogeneous photocatalysis for treatment of toxic metals and arsenic, in Nanomaterials for Environmental Protection, ed. B. I. Kharisov, O. V. Kharissova and H. V. Rasika Dias, John Wiley & Sons, Hoboken, chap. 9, 2014, pp. 145–167, ISBN: 9781118496978, DOI: 10.1002/9781116645530

    Google Scholar 

  11. M. I. Litter, Pure Appl. Chem., 2015, 87, 557.

    Article  CAS  Google Scholar 

  12. M. R. Prairie, L. R. Evans, B. M. Stange, S. L. Martinez, Environ. Sci. Technol., 1993, 27, 1776.

    Article  CAS  Google Scholar 

  13. L. Wang, N. Wang, L. Zhu, H. Yu, H. Tang, J. Hazard. Mater., 2008, 152, 93.

    Article  CAS  Google Scholar 

  14. J. J. Testa, M. A. Grela, M. I. Litter, Langmuir, 2001, 17, 3515.

    Article  CAS  Google Scholar 

  15. J. J. Testa, M. A. Grela, M. I. Litter, Environ. Sci. Technol., 2004, 38, 1589.

    Article  CAS  Google Scholar 

  16. J. M. Meichtry, M. Brusa, G. Mailhot, M. A. Grela, M. I. Litter, Appl. Catal., B, 2007, 71, 101.

    Article  CAS  Google Scholar 

  17. J. M. Meichtry, Doctoral Thesis, University of Buenos Aires, 2011.

  18. L. Yang, Y. Xiao, S. Liu, Y. Li, Q. Cai, S. Luo, G. Zeng, Appl. Catal., B, 2010, 94, 142.

    Article  CAS  Google Scholar 

  19. Z. Xu, S. Bai, J. Liang, L. Zhou, Y. Lan, Mater. Sci. Eng., C, 2013, 33, 2192.

    Article  CAS  Google Scholar 

  20. J. M. Meichtry, C. Colbeau-Justin, G. Custo, M. I. Litter, Appl. Catal. B, 2014, 144, 189.

    Article  CAS  Google Scholar 

  21. U. Siemon, D. Bahnemann, J. J. Testa, D. Rodríguez, N. Bruno, M. I. Litter, J. Photochem. Photobiol., A, 2002, 148, 247.

    Article  CAS  Google Scholar 

  22. ASTM Standards D 1687, 1999

  23. J. M. Meichtry, N. Quici, G. Mailhot, M. I. Litter, Appl. Catal., B, 2011, 102, 454.

    Article  CAS  Google Scholar 

  24. J. M. Meichtry, N. Quici, G. Mailhot, M. I. Litter, Appl. Catal., B, 2011, 102, 555.

    Article  CAS  Google Scholar 

  25. J. M. Meichtry, C. Colbeau-Justin, G. Custo, M. I. Litter, Catal. Today, 2014, 224, 236.

    Article  CAS  Google Scholar 

  26. Y. Ku, I.-L. Jung, Water Res., 2011, 35, 135.

    Article  Google Scholar 

  27. N. Wang, Y. Xu, L. Zhu, X. Shen, H. Tang, J. Photochem. Photobiol., A, 2009, 201, 121.

    Article  CAS  Google Scholar 

  28. S. Tuprakay, W. Liengcharernsit, J. Hazard. Mater., 2005, 124, 53.

    Article  CAS  Google Scholar 

  29. H. Kyung, J. Lee, W. Choi, Environ. Sci. Technol., 2005, 39, 2376.

    Article  CAS  Google Scholar 

  30. S. Ould-Chikh, O. Proux, P. Afanasiev, L. Khrouz, M. N. Hedhili, D. H. Anjum, M. Harb, C. Geantet, J.-M. Basset, E. Puzenat, ChemSusChem, 2014, 7, 1361.

    Article  CAS  Google Scholar 

  31. S. E. Braslavsky, Pure Appl. Chem., 2007, 79, 293.

    Article  CAS  Google Scholar 

  32. C. Colbeau-Justin, M. Kunst, D. Huguenin, J. Mater. Sci., 2003, 38, 2429.

    Article  CAS  Google Scholar 

  33. M. Kunst, F. Goubard, C. Colbeau-Justin, F. Wünsch, Mater. Sci. Eng., C, 2007, 27, 19.

    Article  Google Scholar 

  34. J. Z. Bloh, R. Dillert, D. W. Bahnemann, ChemCatChem, 2013, 5, 774–778.

    Article  CAS  Google Scholar 

  35. C. Gabriel, C. P. Raptopoulou, A. Terzis, V. Tangoulis, C. Mateescu, A. Salifoglou, Inorg. Chem., 2007, 46, 2998.

    Article  CAS  Google Scholar 

  36. C. Gabriel, C. P. Raptopoulou, C. Drouza, N. Lalioti, A. Salifoglou, Polyhedron, 2009, 28, 3209.

    Article  CAS  Google Scholar 

  37. L. Jean-Soro, F. Bordas, J.-C. Bollinger, Environ. Pollut., 2012, 164, 175.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Litter.

Additional information

Electronic supplementary information (ESI) available: Cr(VI) and Cit dark adsorption on P25 and UV100, homogeneous photochemical removal of Cr(VI) in the presence of Cit, photocatalytic kinetic parameters, TRMC fundamentals and results. See DOI: 10.1039/c5pp00420a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montesinos, V.N., Salou, C., Meichtry, J.M. et al. Role of Cr(iii) deposition during the photocatalytic transformation of hexavalent chromium and citric acid over commercial TiO2 samples. Photochem Photobiol Sci 15, 228–234 (2016). https://doi.org/10.1039/c5pp00420a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c5pp00420a

Navigation