Skip to main content

Advertisement

Log in

Cytotoxicity of antimicrobial photodynamic inactivation on epithelial cells when co-cultured with Candida albicans

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

This study assessed the cytotoxicity of antimicrobial Photodynamic Inactivation (aPDI), mediated by curcumin, using human keratinocytes co-cultured with Candida albicans. Cells and microorganisms were grown separately for 24 hours and then kept in contact for an additional 24 hours. After this period, aPDI was applied. The conditions tested were: P+L+ (experimental group aPDI); P−L+ (light emitting diode [LED] group); P+L− (curcumin group); and P−L− (cells in co-culture without curcumin nor LED). In addition, keratinocytes and C. albicans were grown separately, were not placed in the co-culture and did not receive aPDI (control group). Cell proliferation was assessed using Alamar Blue, MTT, XTT and CFU tests. Qualitative and quantitative analyses were performed. Analysis of variance (ANOVA) was applied to the survival percentages of cells compared to the control group (considered as 100% viability), complemented by multiple comparisons using Tukey’s test. A 5% significance level was adopted. The results of this study showed no interference in the metabolism of the cells in co-culture, since no differences were observed between the control group (cultured cells by themselves) and the P−L− group (co-culture cells without aPDI). The aPDI group reached the highest reduction (p = 0.009), which was equivalent to 1.7?log10 when compared to the control group. The P+L−, P−L+, P−L− and control groups were not statistically different (ρ > 0.05). aPDI inhibited the growth of keratinocytes and C. albicans in all tests, so the therapy was considered slightly (inhibition between 25 and 50% compared to the control group) to moderately (inhibition between 50 and 75% compared to the control group) cytotoxic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. W. Banting and S. A. Hill, Microwave disinfection of dentures for the treatment of oral candidiasis, Spec. Care Dentist., 2001, 21, 4–8.

    Article  CAS  PubMed  Google Scholar 

  2. K. H. Neppelenbroek, A. C. Pavarina, D. M. Palomari Spolidorio, E. M. Sgavioli Massucato, L. C. Spolidorio and C. E. Vergani, Effectiveness of microwave disinfection of complete dentures on the treatment of Candida-related denture stomatitis, J. Oral Rehabil., 2008, 35, 836–846.

    Article  CAS  PubMed  Google Scholar 

  3. L. T. Mathaba, G. Davies and J. R. Warmington, The genotypic relationship of Candida albicans strains isolated from the oral cavity of patients with denture stomatitis, J. Med. Microbiol., 1995, 42, 372–379.

    Article  CAS  PubMed  Google Scholar 

  4. T. C. White, K. A. Marr and R. A. Bowden, Clinical, cellular and molecular factors that contribute to antifungal drug resistance, Clin. Microbiol. Rev., 1998, 11, 382–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. D. Sanglard and F. C. Odds, Resistance of Candida species to antifungal agents: molecular mechanisms and clinical consequences, Lancet Infect. Dis., 2002, 2, 73–85.

    Article  CAS  PubMed  Google Scholar 

  6. J. P. Lyon, L. M. Moreira, P. C. G. Moraes, F. V. Santos and M. A. Resende, Photodynamic therapy for pathogenic fungi, Mycoses, 2011, 54, 265–271.

    Article  Google Scholar 

  7. M. R. Hamblin and T. Hasan, Photodynamic therapy: a new antimicrobial approach to infectious disease?, Photochem. Photobiol. Sci., 2004, 3, 436–450.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. L. C. Carmello, L. N. Dovigo, E. G. Mima, J. H. Jorge, C. A. de Souza Costa, V. S. Bagnato and A. C. Pavarina, In vivo evaluation of photodynamic inactivation using Photodithazine® against Candida albicans, Photochem. Photobiol. Sci., 2015, 14, 1319–1328.

    Article  CAS  PubMed  Google Scholar 

  9. L. N. Dovigo, A. C. Pavarina, E. G. Mima, E. T. Giampaolo, E. C. Vergani and V. S. Bagnato, Fungicidal effect of photodynamic therapy against fluconazole-resistant, Mycoses, 2011, 54, 123–130.

    Article  CAS  PubMed  Google Scholar 

  10. J. C. Junqueira, J. S. Martins, R. L. Faria, C. E. D. Colombo and A. O. C. Jorge, Photodynamic therapy for the treatment of buccal candidosis in rats, Lasers Med. Sci., 2009, 24, 877–884.

    Article  PubMed  Google Scholar 

  11. E. G. Mima, A. C. Pavarina, M. M. Silva, D. G. Ribeiro, C. E. Vergani, C. Kurachi and V. S. Bagnato, Denture stomatitis treated with photodynamic therapy: five cases, Oral Surg., Oral Med., Oral Pathol., Oral Radiol., Endod., 2011, 112, 602–608.

    Article  Google Scholar 

  12. E. G. Mima, C. E. Vergani, A. L. Machado, E. M. Massucato, A. L. Colombo, V. S. Bagnato and A. C. Pavarina, Comparison of photodynamic therapy versus conventional antifungal therapy for the treatment of denture stomatitis: a randomized clinical trial, Clin. Microbiol. Infect., 2012, 18, 380–388.

    Article  CAS  Google Scholar 

  13. L. N. Dovigo, J. C. Carmello, C. A. de Souza Costa, C. E. Vergani, I. L. Brunetti, V. S. Bagnato and A. C. Pavarina, Curcumin-mediated photodynamic inactivation of Candida albicans in a murine model of oral candidosis, Med. Mycol., 2013, 51, 243–251.

    Article  CAS  PubMed  Google Scholar 

  14. J. Epstein, I. R. Sanderson and T. T. Macdonald, Curcumin as a therapeutic agent: The evidence from in vitro, animal and human studies, Br. J. Nutr., 2010, 26, 1–13.

    Google Scholar 

  15. L. N. Dovigo, A. C. Pavarina, A. P. Ribeiro, I. L. Brunetti, C. A. Costa, D. P. Jacomassi, V. S. Bagnato and C. Kurachi, Investigation of the photodynamic effects of curcumin against Candida albicans, Photochem. Photobiol., 2011, 87, 895–903.

    Article  CAS  PubMed  Google Scholar 

  16. L. N. Dovigo, A. C. Pavarina, J. C. Carmello, A. L. Machado, I. L. Brunetti and V. S. Bagnato, Susceptibility of clinical isolates of Candida to photodynamic effects of curcumin, Lasers Surg. Med., 2011, 43, 927–934.

    Article  PubMed  Google Scholar 

  17. A. P. Ribeiro, A. C. Pavarina, L. N. Dovigo, I. L. Brunetti, V. S. Bagnato, C. E. Vergani and C. A. Costa, Phototoxic effect of curcumin on methicillin-resistant Staphylococcus aureus and L929 fibroblasts, Lasers Med. Sci., 2013, 28, 391–398.

    Article  PubMed  Google Scholar 

  18. R. F. Donnelly, P. A. McCarron and M. M. Tunney, Antifungal photodynamic therapy, Microbiol. Res., 2008, 163, 1–12.

    Article  CAS  PubMed  Google Scholar 

  19. International Standard. ISO 10993-5: Biological evaluation of medical devices–part 5: Tests for cytotoxicity: in vitro methods, 2007.

    Google Scholar 

  20. J. L. Wilmer, F. G. Burleson, F. Kayama, J. Kanno and M. I. Luster, Cytokine induction in human epidermal keratinocytes exposed to contact irritants and its relation to chemical-induced inflammation in mouse skin, J. Invest. Dermatol., 1994, 102, 915–922.

    Article  CAS  PubMed  Google Scholar 

  21. M. Rouabhia, Interactions between host and oral commensal microorganisms are key events in health and disease status, Scand. J. Infect. Dis., 2002, 13, 47–51.

    Google Scholar 

  22. S. Sonis, L. Edwards and C. Lucey, The biological basis for the attenuation of mucositis: the example of interleukin-11, Leukemia, 1999, 13, 831–834.

    Article  CAS  PubMed  Google Scholar 

  23. A. Mencacci, A. Bacci, E. Cenci, C. Montagnoli, S. Fiorucci, A. Casagrande, R. A. Flavell, F. Bistoni and L. Romani, Interleukin 18 restores defective Th1 immunity to Candida albicans in caspase 1-deficient mice, Infect. Immun., 2000, 68, 5126–5131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. P. N. Boyaka, J. W. Lillard Jr. and J. Mcghee, Interleukin 12 and innate molecules for enhanced mucosal immunity, Immunol. Res., 1999, 20, 207–217.

    Article  CAS  PubMed  Google Scholar 

  25. C. V. Almeida, R. Yara and M. Almeida, Fungos endofíticos isolados de ápices caulinares de pupunheira cultivada in vivo e in vitro, Pesqui. Agropecu. Bras., 2005, 40, 467–470.

    Article  Google Scholar 

  26. J. T. Arnold, D. G. Kaufman, M. Seppälä and B. A. Lessey, Endometrial stromal cells regulate epithelial cell growth in vitro: a new co-culture model, Hum. Reprod., 2001, 16, 836–845.

    Article  CAS  PubMed  Google Scholar 

  27. C. C. Villar, J. Chukwuedum Aniemeke, X. R. Zhao and G. Huynh-Ba, Induction of apoptosis in oral epithelial cells by Candida albicans, Mol. Oral Microbiol., 2012, 27, 436–448.

    Article  CAS  PubMed  Google Scholar 

  28. S. Bergmann and M. Steinert, From single cells to engineered and explanted tissues: new perspectives in bacterial infection biology, Int. Rev. Cell Mol. Biol., 2015, 319, 1–44.

    Article  CAS  PubMed  Google Scholar 

  29. S. K. Linden, K. M. Driessen and M. A. McGuckin, Improved in vitro model systems for gastrointestinal infection by choice of cell line, pH, microaerobic conditions, and optimization of culture conditions, Helicobacter, 2007, 12, 341–353.

    Article  PubMed  Google Scholar 

  30. M. C. Andrade, A. R. Ribeiro, L. N. Dovigo, I. L. Brunetti, E. T. Giampaolo, V. S. Bagnato and A. C. Pavarina, Effect of different pre-irradiation times on curcumin-mediated photodynamic therapy against planktonic cultures and biofilms of Candida spp, Arch. Oral Biol., 2013, 58, 200–210.

    Article  CAS  PubMed  Google Scholar 

  31. A. P. Ribeiro, A. C. Pavarina, F. Z. Trindade, N. M. Inada, V. S. Bagnato and C. A. de Souza Costa, Photodynamic therapy associating Photogem and blue LED on L929 and MDPC-23 cell culture, Cell Biol. Int., 2010, 34, 343–351.

    Article  PubMed  CAS  Google Scholar 

  32. B. Zeina, J. Greenman, D. Corry and W. M. Purcell, Cytotoxic effects of antimicrobial photodynamic therapy on keratinocytes in vitro, Br. J. Dermatol., 2002, 146, 568–573.

    Article  CAS  PubMed  Google Scholar 

  33. T. I. Karu, Effects of visible radiation on cultured cells, Photochem. Photobiol., 1990, 52, 1089–1098.

    Article  CAS  PubMed  Google Scholar 

  34. N. L. Oleinick, R. L. Morris and I. Belichenko, The role of apoptosis in response to photodynamic therapy: What, where, why, and how, Photochem. Photobiol. Sci., 2002, 1, 1–21.

    Article  CAS  PubMed  Google Scholar 

  35. J. C. Carmello, A. C. Pavarina, R. Oliveira and B. Johansson, Genotoxic effect of photodynamic therapy mediated by curcumin on Candida albicans, FEMS Yeast Res., 2015, 15, 1–9.

    Article  CAS  Google Scholar 

  36. S. C. de Souza, J. C. Junqueira, I. Balducci, C. Y. Koga-Ito, E. Munin and A. O. Jorge, Photosensitization of different Candida species by low power laser light, J. Photochem. Photobiol., B, 2006, 3, 34–38.

    Article  CAS  Google Scholar 

  37. E. G. Mima, A. C. Pavarina, L. N. Dovigo, C. E. Vergani, C. A. S. Costa, C. Kurashi and V. S. Bagnato, Susceptibility of Candida albicans to photodynamic therapy in a murine model of oral candidosis, Oral Surg., Oral Med., Oral Pathol., Oral Radiol., Endod., 2010, 109, 392–401.

    Article  Google Scholar 

  38. K. Mehta, P. Pantazis, T. Mcqueen and B. B. Aggarwal, Antiproliferative effect of curcumin (Diferuloylmethane) against human breast tumor cell lines, Anticancer Drugs, 1997, 8, 470–481.

    Article  CAS  PubMed  Google Scholar 

  39. S. Manju and K. Sreenivasan, Synthesis and characterization of a cytotoxic cationic polyvinylpyrrolidone-curcumin conjugate, J. Pharm. Sci., 2011, 100, 504–511.

    Article  CAS  PubMed  Google Scholar 

  40. C. V. Martins C.V. D. L. da Silva, A. T. Neres, T. F. Magalhães, G. A. Watanabe, L. V. Modolo, A. A. Sabino, A. de Fátima and M. A. de Resende, Curcumin as a promising antifungal of clinical interest, J. Antimicrob. Chemother., 2009, 63, 337–339.

    Article  CAS  PubMed  Google Scholar 

  41. J. Liu, L. Zheng, Y. Li, Z. Zhang, L. Zhang, L. Shen, X. Zhang and H. Qiao, Effect of DTPP-mediated photodynamic therapy on cell morphology, viability, cell cycle, and cytotoxicity in a murine lung adenocarcinoma cell line, Lasers Med. Sci., 2015, 30, 181–191.

    Article  PubMed  Google Scholar 

  42. M. M. Nociari, A. Shalev, P. Benias and C. Russo, A novel one-step, highly sensitive fluorometric assay to evaluate cell-mediated cytotoxicity, J. Immunol. Methods, 1998, 15, 157–167.

    Article  Google Scholar 

  43. G. Ramage, S. P. Saville, D. P. Thomas and J. L. Lopez-Ribot, Candida biofilms: an update, Eukaryotic Cell, 2005, 4, 633–638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. H. T. Taff, K. F. Mitchell, J. A. Edward and D. R. Andes, Mechanisms of Candida biofilm drug resistance, Future Microbiol., 2013, 8, 1325–1337.

    Article  CAS  PubMed  Google Scholar 

  45. C. A. Pereira, R. L. Romeiro, A. C. B. P. Costa, A. K. S. Machado, J. C. Junqueira and A. O. Jorge, Susceptibility of Candida albicans, Staphylococcus aureus, and Streptococcus mutans biofilms to photodynamic inactivation: an in vitro study, Lasers Med. Sci., 2011, 26, 341–348.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janaina Habib Jorge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pellissari, C.V.G., Pavarina, A.C., Bagnato, V.S. et al. Cytotoxicity of antimicrobial photodynamic inactivation on epithelial cells when co-cultured with Candida albicans. Photochem Photobiol Sci 15, 682–690 (2016). https://doi.org/10.1039/c5pp00387c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c5pp00387c

Navigation