Skip to main content
Log in

Specific excitonic interactions in the aggregates of hyaluronic acid and cyanine dyes with different lengths of methine group

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The absorption and circular dichroism (CD) spectra of three types of cyanine dyes with different lengths of methine group (3,3′-diethylthiadicarbocyanine iodide, DTDC; 3,3′-diethylthiacarbocyanine iodide, DTC; and 3,3′-diethylthiacyanine iodide, DTTHC) in an aqueous solution were compared with and without hyaluronic acid (HA), which has a helical structure. DTDC forms chiral H- and J-aggregates, whereas DTC and DTTHC are unable to form any aggregates. DTDC also forms H- and J-aggregates in the presence of sodium polyacrylate (PA) with a random-coil structure; however, the PA-DTDC aggregates exhibit no chirality. These results suggest that the chirality of HA-DTDC aggregates is induced by the helical structure of HA. In 2.4 vol% and 10 vol% methanol, HA-DTDC aggregates displayed different patterns of temperature dependence, whereas no aggregation was observed in 30 vol% methanol. The solubility of DTDC in a mixed solvent of water and methanol is generally improved by the addition of methanol, which prevents the aggregation of DTDC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Hargittai and M. Hargittai, Molecular structure of hyaluronan: an introduction, Struct. Chem., 2008, 19, 697–717.

    Article  CAS  Google Scholar 

  2. I. C. M. Dea, R. Moorhouse, D. A. Rees, S. Arnott, J. M. Guss and E. A. Balazs, Hyaluronic Acid: A Novel, Double Helical Molecule, Science, 1973, 179, 560–562.

    Article  CAS  Google Scholar 

  3. J. K. Sheehan and E. D. T. Atkins, X-ray fibre diffraction study of conformational changes in hyaluronate induced in the presence of sodium, potassium and calcium cations, Int. J. Biol. Macromol., 1983, 5, 215–221.

    Article  CAS  Google Scholar 

  4. S. Arnott, A. K. Mitra and S. Raghunathan, Hyaluronic Acid Double Helix, J. Mol. Biol., 1983, 169, 861–872.

    Article  CAS  Google Scholar 

  5. A. Almond, P. L. Deangelis and C. D. Blundell, Hyaluronan: the local solution conformation determined by NMR and computer modeling is close to a contracted left-handed 4-fold helix, J. Mol. Biol., 2006, 358, 1256–1269.

    Article  CAS  Google Scholar 

  6. V. Gargiulo, M. A. Morando, A. Silipo, A. Nurisso, S. Pérez, A. Imberty, F. J. Cañada, M. Parrilli, J. Jiménez-Barbero and C. D. Castro, Insights on the conformational properties of hyaluronic acid by using NMR residual dipolar couplings and MD simulations, Glycobiology, 2010, 20, 1208–1216.

    Article  CAS  Google Scholar 

  7. H. Ihara, M. Shibata and C. Hirayama, Molecular recognition using cyanine-α-helical poly (L-lysine) complexes in methanol, Chem. Lett., 1992, 1731–1734.

    Google Scholar 

  8. J. L. Seifert, R. E. Connor, S. A. Kushon, M. Wang and B. A. Armitage, Spontaneous assembly of helical cyanine dye aggregates on DNA nanotemplates, J. Am. Chem. Soc., 1999, 121, 2987–2995.

    Article  CAS  Google Scholar 

  9. A. L. Stadler, B. R. Renikuntla, D. Yaron, A. S. Fang and B. A. Armitage, Substituent Effects on the assembly of helical cyanine dye aggregates in the minor groove of a DNA template, Langmuir, 2011, 27, 1472–1479.

    Article  CAS  Google Scholar 

  10. T. M. Akimkin, A. S. Tatikolov, I. G. Panova and S. M. Yarmoluk, Spectral study of the noncovalent interaction of thiacarbocyanine dyes with hyaluronic acid, High Energy Chem., 2011, 45, 515–520.

    Article  CAS  Google Scholar 

  11. T. Sagawa, H. Tobata and H. Ihara, Exciton interactions in cyanine dye–hyaluronic acid (HA) complex: reversible and biphasic molecular switching of chromophores induced by random coil-to-double-helix phase transition of HA, Chem. Commun., 2004, 2090–2091.

    Google Scholar 

  12. J. Ghasemi, A. Niazi, G. Westman and M. Kubista, Thermodynamic characterization of the dimerization equilibrium of an asymmetric dye by spectral titration and chemometric analysis, Talanta, 2004, 62, 835–841.

    Article  CAS  Google Scholar 

  13. M. Kasha, H. R. Rawls, M. Ashraf El-Bayoumi, The exciton model in molecular spectroscopy, Pure Appl. Chem., 1965, 11, 371–392.

    Article  CAS  Google Scholar 

  14. K. Sayama, S. Tsukagoshi, T. Mori, K. Hara, Y. Ohga, A. Shinpou, Y. Abe, S. Suga and H. Arakawa, Efficient sensitization of nanocrystalline TiO2 films with cyanine and merocyanine organic dyes, Sol. Energy Mater. Sol. Cells, 2003, 80, 47–71.

    Article  CAS  Google Scholar 

  15. K. Sayama, S. Tsukagoshi, K. Hara, Y. Ohga, A. Shinpou, Y. Abe, S. Suga and H. Arakawa, Photoelectrochemical Properties of J Aggregates of Benzothiazole Merocyanine Dyes on a Nanostructured TiO2 Film, J. Phys. Chem. B, 2002, 106, 1363–1371.

    Article  CAS  Google Scholar 

  16. P. W. Staskus, W. C. Johnson Jr., Conformational transition of hyaluronic acid in aqueous-organic solvent monitored by vacuum ultraviolet circular dichroism, Biochemistry, 1988, 27, 1522–1527.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Tobata.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c5pp00343a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tobata, H., Sagawa, T. Specific excitonic interactions in the aggregates of hyaluronic acid and cyanine dyes with different lengths of methine group. Photochem Photobiol Sci 15, 329–333 (2016). https://doi.org/10.1039/c5pp00343a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c5pp00343a

Navigation