Skip to main content
Log in

Photobiological properties of 3-psoralenacetic acids

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Some 4,8-dimethyl-3-psoralenacetic acids were synthesized and studied. All the designed psoralenacetic acids bear alkyl or cycloalkyl substituents at the furan ring. These psoralenacetic acids were shown to be a novel class of psoralen derivatives characterized by an interesting photobiological profile. The carboxylic group at the 3 position, useful to confer hydrophilic properties, appears to be detrimental to the classical intercalation into DNA, likely because of repulsive interactions with the negative surface of the macromolecule. Nevertheless, the new derivatives possess a notable photoantiproliferative activity, due to a peculiar mechanism of action consisting of a decarboxylation step before exerting their photobiological activity. The most active compound 2 is able to induce a noteworthy photocytotoxic effect, with GI50 values being submicromolar on human tumor cell lines and no effect in the dark. The involvement of DNA photoaddition after UVA light-mediated decarboxylation and ROS formation is responsible for its biological activity, as demonstrated comparing the activity profile of the decarboxylated analogue. However, other biological targets seem to be involved in the photooxidative damage, such as proteins. Compound 2 could thus be considered as a prodrug, inactive without UVA light but activated upon specific irradiation, thus preventing unselective side effects and opening new perspectives on agents useful in photochemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. E. Ben-Hur, P. S. Song, The photochemistry and photobiology of furocoumarins (psoralens), Adv. Rad. Biol., 1984, 11, 131–171.

    Article  CAS  Google Scholar 

  2. G. D. Cimino, H. B. Gamper, S. T. Isaacs, J. E. Hearst, Psoralens as Photoactive Probes of Nucleic Acid Structure and Function Organic Chemistry, Photochemistry, and Biochemistry, Annu. Rev. Biochem., 1985, 54, 1151–1193.

    Article  CAS  Google Scholar 

  3. M. Canton, S. Caffieri, F. Dall’Acqua, F. Di Lisa, PUVA-induced apoptosis involves mitochondrial dysfunction caused by the opening of the permeability transition pore, FEBS Lett., 2002, 522, 168–172.

    Article  CAS  Google Scholar 

  4. J. A. Parrish, R. S. Stern, M. A. Pathak and T. B. Fitzpatrick, Photochemotherapy of skin diseases, in The science of photomedicine, ed. J. D. Regan and J. A. Parrish, Plenum, New York, 1982, pp. 595–623.

    Chapter  Google Scholar 

  5. W. McNeely, K. L. Goa, 5-Methoxypsoralen. A review of its effects in psoriasis and vitiligo, Drugs, 1998, 56, 667–690.

    Article  CAS  Google Scholar 

  6. F. Pavlotsky, E. Hodak, D. Ben Amitay, A. Barzilai, Role of bath psoralen plus ultraviolet A in early-stage mycosis fungoides, J. Am. Acad. Dermatol., 2014, 71, 536–541.

    Article  CAS  Google Scholar 

  7. F. Trautinger, U. Just, R. Knobler, Photopheresis (extracorporeal photochemotherapy), Photochem. Photobiol. Sci., 2013, 12, 22–28.

    Article  CAS  Google Scholar 

  8. L. Lin, D. N. Cook, G. P. Wiesehahn, R. Alfonso, B. Behrman, G. D. Cimino, L. Corten, P. B. Damonte, R. Dikeman, K. Dupuis, Y. M. Fang, C. V. Hanson, J. E. Hearst, C. Y. Lin, H. F. Londe, K. Metchette, A. T. Nerio, J. T. Pu, A. A. Reames, M. Rheinschmidt, J. Tessman, S. T. Isaacs, S. Wollowitz, L. Corash, Photochemical inactivation of viruses and bacteria in platelet concentrates by use of a novel psoralen and long-wavelength ultraviolet light, Transfusion, 1997, 37, 423–435.

    Article  CAS  Google Scholar 

  9. T. K. Momtaz, T. B. Fitzpatrick, The benefits and risks of long-term puva photochemotherapy, Dermatol. Clin., 1998, 16, 227–234.

    Article  CAS  Google Scholar 

  10. I. V. Nagorichna, I. P. Dubovik, M. M. Garazd, V. P. Khilya, Modified Coumarins. 10. Synthesis of Substituted 2-(7-Oxofuro[3,2-g]chromen-6-yl)acetic Acids, Chem. Nat. Compd., 2003, 39, 253–261.

    Article  CAS  Google Scholar 

  11. M. Borgatti, A. Chilin, L. Piccagli, I. Lampronti, N. Bianchi, I. Mancini, G. Marzaro, F. Dall’Acqua, A. Guiotto, R. Gambari, Development of a novel furocoumarin derivative inhibiting NF-kappaB dependent biological functions: design, synthesis and biological effects, Eur. J. Med. Chem., 2011, 46, 4870–4877.

    Article  CAS  Google Scholar 

  12. G. Marzaro, A. Guiotto, M. Borgatti, A. Finotti, R. Gambari, G. Breveglieri, A. Chilin, Psoralen derivatives as inhibitors of NF-kappaB/DNA interaction synthesis, molecular modeling, 3D-QSAR, and biological evaluation, J. Med. Chem., 2013, 56, 1830–1842.

    Article  CAS  Google Scholar 

  13. F. Dall’Acqua, S. Marciani, D. Vedaldi, G. Rodighiero, Studies on the photoreactions (365 nm) between DNA and some methylpsoralens, Biochim. Biophys. Acta, 1974, 353, 267–273.

    Article  Google Scholar 

  14. M. Palumbo, F. Baccichetti, C. Antonello, O. Gia, A. Capozzi, S. Marciani, Photobiological activity of 3,4′-dimethyl-8-methoxypsoralen, a linear furocoumarin with unusual DNA-binding properties, Photochem. Photobiol., 1990, 52, 533–540.

    Article  CAS  Google Scholar 

  15. P. Rodighiero, M. Palumbo, S. Marciani, P. Manzini, O. Gia, R. Piro, A. Guiotto, Methyl derivatives of tetrahydrobenzo- and benzofurocoumarins, a new class of potential photoreagents toward DNA, J. Heterocycl. Chem., 1986, 23, 1405–1410.

    Article  CAS  Google Scholar 

  16. G. Miolo, V. Lucchini, D. Vedaldi, A. Guiotto, S. Caffieri, Dark and photochemical interactions of dimethyltetrahydro-benzoancelicin with DNA, Photochem. Photobiol., 1998, 67, 628–634.

    Article  CAS  Google Scholar 

  17. S. Caffieri, G. Miolo, F. Dall’Acqua, F. Benetollo, G. Bombieri, Photoaddition of 4,6-dimethyltetrahydrobenzo-angelicin to thymine in DNA. X-ray studies and experiments with model oligonucleotides, Photochem. Photobiol., 2000, 72, 23–27.

    Article  CAS  Google Scholar 

  18. A. Chilin, C. Marzano, A. Guiotto, P. Manzini, F. Baccichetti, F. Carlassare, F. Bordin, Synthesis and biological activity of (hydroxymethyl)- and (diethylaminomethyl)-benzopsoralens., J. Med. Chem., 1999, 42, 2936–2945.

    Article  CAS  Google Scholar 

  19. L. Dalla Via, O. Gia, S. Marciani Magno, L. Santana, M. Teijeira, E. Uriarte, New Tetracyclic Analogues of Photochemo-therapeutic Drugs 5-MOP and 8-MOP Synthesis, DNA Interaction, and Antiproliferative Activity., J. Med. Chem., 1999, 42, 4405–4413.

    Article  CAS  Google Scholar 

  20. L. Dalla Via, E. Uriarte, L. Santana, S. Marciani Magno, O. Gia, ARKIVOC, 2004, 5, 131–146.

    Google Scholar 

  21. Marvin, version 5.5.0.1, Program B ChemAxon Budapest, Hungary, http://www.chemaxon.com/products.

  22. A. Wada, S. Kozawa, Instrument for the studies of differential flow dichroism of polymer solutions, J. Polym. Sci., Part A: Gen. Pap., 1964, 2, 853–864.

    Google Scholar 

  23. B. Norden, Applications of linear dichroism spectroscopy, Appl. Spectrosc. Rev., 1978, 14, 157–248.

    Article  CAS  Google Scholar 

  24. A. T. Ciulla, J. R. van Camp, E. Rosenfeld, I. Kochevar, Photosensitization of single-strand breaks in pBR322 DNA by rose Bengal, J. Photochem. Photobiol., 1989, 49, 293–298.

    Article  CAS  Google Scholar 

  25. N. M. O’Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch, G. R. Hutchison, Open Babel An open chemical toolbox, J. Cheminf., 2011, 3, 33.

    Article  Google Scholar 

  26. G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, A. J. Olson, AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility, J. Comput. Chem., 2009, 30, 2785–2791.

    Article  CAS  Google Scholar 

  27. G. Miolo, A. Salvador, A. Mazzoli, A. Spalletti, G. Marzaro, A. Chilin, Photochemical and photobiological studies on furoquinazolines as new psoralen analogues, J. Photochem. Photobiol., B, 2014, 138, 43–54.

    Article  CAS  Google Scholar 

  28. I. Kraljic, S. El Moshni, A new method for the detection of singlet oxygen in aqueous solutions, Photochem. Photobiol., 1978, 28, 577–581.

    Article  CAS  Google Scholar 

  29. P. C. Joshi, M. Pathak, Production of singlet oxygen and superoxide radical by psoralens and their biological significance, Biochem. Biophys. Res. Commun., 1983, 112, 638–646.

    Article  CAS  Google Scholar 

  30. M. A. Pathak, P. C. Joshi, Production of active oxygen species by psoralens and ultraviolet radiation, Biochim. Biophys. Acta, 1984, 798, 115–126.

    Article  CAS  Google Scholar 

  31. A. Z. Reznick, L. Packer, Oxidative damage to proteins spectrophotometric method for carbonyl assay, Methods Enzymol., 1994, 233, 357–363.

    Article  CAS  Google Scholar 

  32. F. Dall’Acqua, M. Terbojevich, S. Marciani, D. Vedaldi, M. Recher, Investigation on the dark interaction between furocoumarins and DNA, Chem.-Biol. Interact., 1978, 21, 103–115.

    Article  Google Scholar 

  33. F. Tjerneld, B. Norden, B. Ljunggren, Interaction between DNA and 8-methoxypsoralen studied by linear dichroism, Photochem. Photobiol., 1979, 29, 1115–1118.

    Article  CAS  Google Scholar 

  34. F. Dall’Acqua, S. Caffieri, Recent and selected aspects of furocoumarin photochemistry and photobiology, Photomed. Photobiol., 1988, 10, 1–46.

    Google Scholar 

  35. S. Caffieri, P. Rodighiero, D. Vedaldi, F. Dall’Acqua, Methylallopsoralen-thymine 3,4- and 4′,5′-monoadducts formed in the photoreaction with DNA, Photochem. Photobiol., 1985, 42, 361–366.

    Article  CAS  Google Scholar 

  36. S. Caffieri, D. Vedaldi, A. Chilin, A. Pozzan, 8-Azapsoralen derivatives isolation and characterization of the furan-side cycloadducts with DNA, J. Photochem. Photobiol., B, 1994, 22, 151–155.

    Article  CAS  Google Scholar 

  37. D. Vedaldi, S. Caffieri, G. Miolo, F. Dall’Acqua, F. Baccichetti, A. Guiotto, F. Benetollo, G. Bombieri, G. Recchia, M. Cristofolini, Azapsoralens: new potential photochemo-therapeutic agents for psoriasis, Farmaco, 1991, 46, 1407–1433.

    CAS  PubMed  Google Scholar 

  38. J. L. Nitiss, DNA-Topoisomerase II and its growing repertoire of biological functions, Nat. Rev. Cancer, 2009, 9, 327–337.

    Article  CAS  Google Scholar 

  39. S. Caffieri, Furocoumarin photolysis chemical and biological aspects, Photochem. Photobiol. Sci., 2002, 1, 149–157.

    Article  CAS  Google Scholar 

  40. X. Chen, J. Kagan, G. Miolo, F. Dall’Acqua, D. Averbeck, E. Bisagni, Photosensitized cross-linking and cleavage of pBR322 and M13 DNA: a comparison of 4,4′,6-trimethylangelicin and 3-carbethoxypsoralen, J. Photochem. Photobiol., B, 1994, 22, 51–57.

    Article  CAS  Google Scholar 

  41. L. R. Levine, D. Garland, C. N. Oliver, A. Amici, I. Climent, A. G. Lenz, B. G. Ahn, V. Shaltiel, E. R. Stadtaman, Determination of carbonyl content in oxidatively modified proteins, Methods Enzymol., 1990, 186, 464–478.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgia Miolo.

Additional information

Electronic supplementary information (ESI) available: Synthesis of compound 7, table of log?D, mass spectra of photoadducts, and mass spectra of photolysis products. See DOI: 10.1039/c5pp00210a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalla Via, L., Marzaro, G., Mazzoli, A. et al. Photobiological properties of 3-psoralenacetic acids. Photochem Photobiol Sci 14, 2074–2086 (2015). https://doi.org/10.1039/c5pp00210a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c5pp00210a

Navigation