Skip to main content
Log in

Photodynamic inactivation of Escherichia coli with cationic ammonium Zn(ii) phthalocyanines

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The aim of this work was the development of a family of novel water soluble Zinc(ii) phthalocyanines (Pc) for the photodynamic inactivation of Gram-negative bacteria. Pc derivatives 1a, 2a and 3a containing trimethylammonium groups with varied number and nature of the groups at peripheral positions were synthesized by cyclotetramerization of dimethyl amino substituted phthalonitriles in the presence of zinc powder, using 1-chloronaphthalene as a solvent, followed by cationization using dimethyl sulfate. The solubility, singlet oxygen generation (1O2) and stability/photostability of each Pc were evaluated as well as the affinity to bacterial cells and their photosensitizing potential against a recombinant bioluminescent Escherichia coli strain, used as a biological model for Gram negative bacteria. The efficiency of photodynamic inactivation was assessed under white and red light at an irradiance of 150 mW cm−2. All Pc were soluble in phosphate buffer saline and in dimethyl sulfoxide and demonstrated good stability/photostability. The photochemical parameters reveal that Pc 2a and 3a are more efficient singlet oxygen producers than Pc 1a, for which singlet oxygen generation could not be demonstrated. Pc 2a and 3a caused photosensitization in E. coli. The inactivation factors attained with red light were, however, generally higher than those with white light. Under red light Pc 3a and 2a caused, respectively, 5.6 and 4.9 log reduction in the bioluminescence of the E. coli while, with white light, the corresponding inactivation factors were 2.5 and 0.5 log. The order of the PDI efficiency (3a > 2a1a) was determined by the combined effect of solubility, singlet oxygen generation ability and affinity to bacterial cells. Ammonium phthalocyanines with eight charges or containing halogen atoms such as chlorine, when irradiated with red light can, therefore, be regarded as promising photosensitizers for the inactivation of Gram-negative bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. R. Hamblin and T. Hasan, Photodynamic therapy: a new antimicrobial approach to infectious disease?, Photochem. Photobiol. Sci., 2004, 3, 436–450.

    Article  CAS  Google Scholar 

  2. G. Jori, C. Fabris, M. Soncin, S. Ferro, O. Coppellotti, D. Dei, L. Fantetti, G. Chiti and G. Roncucci, Photodynamic therapy in the treatment of microbial infections: basic principles and perspective applications, Lasers Surg. Med., 2006, 38, 468–481.

    Article  Google Scholar 

  3. J. Almeida, J. P. C. Tomé, M. G. P. M. S. Neves, A. C. Tomé, J. A. S. Cavaleiro, Â. Cunha, L. Costa, M. A. F. Faustino and A. Almeida, Photodynamic inactivation of multidrug-resistant bacteria in hospital wastewaters: influence of residual antibiotics, Photochem. Photobiol. Sci., 2014, 13, 626–633.

    Article  CAS  Google Scholar 

  4. L. N. Dovigo, A. C. Pavarina, E. G. D. O. Mima, E. T. Giampaolo, C. E. Vergani and V. S. Bagnato, Fungicidal effect of photodynamic therapy against fluconazole-resistant Candida albicans and Candida glabrata, Mycoses, 2011, 54, 123–130.

    Article  CAS  Google Scholar 

  5. L. Costa, C. M. B. Carvalho, M. A. F. Faustino, M. G. P. M. S. Neves, J. P. C. Tomé, A. C. Tomé, J. A. S. Cavaleiro, A. Cunha and A. Almeida, Sewage bacteriophage inactivation by cationic porphyrins: influence of light parameters, Photochem. Photobiol. Sci., 2010, 9, 1126–1133.

    Article  CAS  Google Scholar 

  6. L. Costa, M. A. F. Faustino, M. G. P. M. S. Neves, A. Cunha and A. Almeida, Photodynamic inactivation of mammalian viruses and bacteriophages, Viruses, 2012, 4, 1034–1074.

    Article  Google Scholar 

  7. L. Costa, J. P. C. Tomé, M. G. P. M. S. Neves, A. C. Tomé, J. a S. Cavaleiro, A. Cunha, M. a F. Faustino and A. Almeida, Susceptibility of non-enveloped DNA- and RNA-type viruses to photodynamic inactivation, Photochem. Photobiol. Sci., 2012, 11, 1520–1523.

    Article  CAS  Google Scholar 

  8. M. C. Gomes, S. M. Woranovicz-Barreira, M. A. F. Faustino, R. Fernandes, M. G. P. M. S. Neves, A. C. Tomé, N. C. M. Gomes, A. Almeida, J. A. S. Cavaleiro, A. Cunha and J. P. C. Tomé, Photodynamic inactivation of Penicillium chrysogenum conidia by cationic porphyrins, Photochem. Photobiol. Sci., 2011, 10, 1735–1743.

    Article  CAS  Google Scholar 

  9. M. P. Cormick, M. G. Alvarez, M. Rovera and E. N. Durantini, Photodynamic inactivation of Candida albicans sensitized by tri- and tetra-cationic porphyrin derivatives, Eur. J. Med. Chem., 2009, 44, 1592–1599.

    Article  CAS  Google Scholar 

  10. K. Kassab, T. Ben Amor, G. Jori and O. Coppellotti, Photochem. Photosensitization of Colpoda inflata cysts by meso-substituted cationic porphyrins, Photobiol. Sci., 2002, 1, 560–564.

    Article  CAS  Google Scholar 

  11. G. Jori and S. B. Brown, Photochem. Photosensitized inactivation of microorganisms, Photobiol. Sci., 2004, 3, 403–405.

    Article  CAS  Google Scholar 

  12. A. Oliveira, A. Almeida, C. M. B. Carvalho, J. P. C. Tomé, M. A. F. Faustino, M. G. P. M. S. Neves, A. C. Tomé, J. A. S. Cavaleiro and A. Cunha, Porphyrin derivatives as photosensitizers for the inactivation of Bacillus cereus endospores, J. Appl. Microbiol., 2009, 106, 1986–1995.

    Article  CAS  Google Scholar 

  13. M. R. Ke, J. M. Eastel, K. L. K. Ngai, Y. Y. Cheung, P. K. S. Chan, M. Hui, D. K. P. Ng and P. C. Lo, Photodynamic inactivation of bacteria and viruses using two monosubstituted zinc(II) phthalocyanines, Eur. J. Med. Chem., 2014, 84, 278–283.

    Article  CAS  Google Scholar 

  14. M. A. Pereira, M. A. F. Faustino, J. P. C. Tomé, M. G. P. M. S. Neves, A. C. Tomé, J. A. S. Cavaleiro, Â. Cunha and A. Almeida, Influence of external bacterial structures on the efficiency of photodynamic inactivation by a cationic porphyrin, Photobiol. Sci., 2014, 13, 680–690.

    Article  CAS  Google Scholar 

  15. A. Preuss, L. Zeugner, S. Hackbarth, M. A. F. Faustino, M. G. P. M. S. Neves, J. A. S. Cavaleiro and B. Roeder, Photoinactivation of Escherichia coli (SURE2) without intracellular uptake of the photosensitizer, J. Appl. Microbiol., 2013, 114, 36–43.

    Article  CAS  Google Scholar 

  16. J. P. C. Tomé, M. G. P. M. S. Neves, A. C. Tomé, J. A. S. Cavaleiro, M. Soncin, M. Magaraggia, S. Ferro and G. Jori, Synthesis and antibacterial activity of new poly-S-lysine-porphyrin conjugates, J. Med. Chem., 2004, 47, 6649–6652.

    Article  Google Scholar 

  17. J. B. Pereira, E. F. A. Carvalho, M. A. F. Faustino, R. Fernandes, M. G. P. M. S. Neves, J. A. S. Cavaleiro, N. C. M. Gomes, A. Cunha, A. Almeida and J. P. C. Tomé, Phthalocyanine thio-pyridinium derivatives as antibacterial photosensitizers, Photochem. Photobiol., 2012, 88, 537–547.

    Article  CAS  Google Scholar 

  18. D. Mondal and S. Bera, Porphyrins and phthalocyanines: promising molecules for light-triggered antibacterial nanoparticles, Adv. Nat. Sci.: Nanosci. Nanotechnol., 2014, 5, 033002.

    CAS  Google Scholar 

  19. B. Y. Zheng, X. J. Jiang, T. Lin, M. R. Ke and J. D. Huang, Novel silicon(IV) phthalocyanines containing piperidinyl moieties: Synthesis and in vitro antifungal photodynamic activities, Dyes Pigm., 2015, 112, 311–316.

    Article  CAS  Google Scholar 

  20. M. DeRosa, Photosensitized singlet oxygen and its applications, Chem. Rev., 2002, 233–234, 351–371.

    Google Scholar 

  21. A. Minnock, D. I. Vernon, J. Schofield, J. Griffiths, J. H. Parish, S. T. Brown, Photoinactivation of bacteria. Use of a cationic water-soluble zinc phthalocyanine to photoinactivate both gram-negative and gram-positive bacteria, J. Photochem. Photobiol. B, 1996, 32, 159–164.

    Article  CAS  Google Scholar 

  22. J. C. Junqueira, A. O. C. Jorge, J. O. Barbosa, R. D. Rossoni, S. F. G. Vilela, A. C. B. P. Costa, F. L. Primo, J. M. Gonçalves, A. C. Tedesco and J. M. A. H. Suleiman, Photodynamic inactivation of biofilms formed by Candida spp., Trichosporon mucoides, and Kodamaea ohmeri by cationic nanoemulsion of zinc 2,9,16,23-tetrakis(phenylthio)-29H, 31H-phthalocyanine (ZnPc), Lasers Med. Sci., 2012, 27, 1205–1212.

    Article  CAS  Google Scholar 

  23. S. Dutta, B. G. Ongarora, H. Li, M. D. G. H. Vicente, B. K. Kolli and K. P. Chang, Intracellular targeting specificity of novel phthalocyanines assessed in a host-parasite model for developing potential photodynamic medicine, PLoS One, 2011, 6, e20786.

    Article  CAS  Google Scholar 

  24. Y. Arenas, S. Monro, G. Shi, A. Mandel, S. McFarland and L. Lilge, Photodynamic inactivation of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus with Ru(II)-based type I/type II photosensitizers, Photodiagn. Photodyn. Ther., 2013, 10, 615–625.

    Article  CAS  Google Scholar 

  25. N. Venkatramaiah, D. M. G. C. Rocha, P. Srikanth, F. A. Almeida Paz and J. P. C. Tomé, Synthesis and photophysical characterization of dimethylamine-derived Zn(ii)phthalocyanines: exploring their potential as selective chemosensors for trinitrophenol, J. Mater. Chem. C, 2015, 3, 1056–1067.

    Article  CAS  Google Scholar 

  26. P. R. Ogilby, Singlet oxygen: there is indeed something new under the sun, Chem. Soc. Rev., 2010, 39, 3181–3209.

    Article  CAS  Google Scholar 

  27. E. Alves, C. M. B. Carvalho, J. P. C. Tomé, M. A. F. Faustino, M. G. P. M. S. Neves, A. C. Tomé, J. A. S. Cavaleiro, A. Cunha, S. Mendo and A. Almeida, Photodynamic inactivation of recombinant bioluminescent Escherichia coli by cationic porphyrins under artificial and solar irradiation, J. Ind. Microbiol. Biotechnol., 2008, 35, 1447–1454.

    Article  CAS  Google Scholar 

  28. T. N. Demidova and M. R. Hamblin, Photodynamic inactivation of Bacillus spores, mediated by phenothiazinium dyes, Appl. Environ. Microbiol., 2005, 71, 6918–6925.

    Article  CAS  Google Scholar 

  29. R. A. Prates, E. G. Silva, A. M. Yamada, L. C. Suzuki, C. R. Paula and M. S. Ribeiro, Light parameters influence cell viability in antifungal photodynamic therapy in a fluence and rate fluence-dependent manner, Laser Phys., 2009, 19, 1038–1044.

    Article  CAS  Google Scholar 

  30. L. F. de Paula, R. O. Santos, H. D. Menezes, J. R. de Britto, J. B. Vieira Jr., P. P. Gontijo Filho and C. A. de Oliveira, A comparative study of irradiation systems for photoinactivation of microorganisms, J. Braz. Chem. Soc., 2010, 21, 694–700.

    Article  Google Scholar 

  31. C. S. Foote, Definition of type I and type II photosensitized oxidation, Photochem. Photobiol., 1991, 54, 659-659.

    Article  CAS  Google Scholar 

  32. A. Tavares, S. R. Dias, C. M. Carvalho, M. A. Faustino, J. P. Tomé, M. G. P. M. S. Neves, A. C. Tomé, J. A. S. Cavaleirom A. Cunha, N. C. M. Gomes, E. Alves and A. Almeida, Mechanisms of photodynamic inactivation of a Gram-negative recombinant bioluminescent bacterium by cationic porphyrins, Photochem. Photobiol. Sci., 2011, 10, 1659–1669.

    Article  CAS  Google Scholar 

  33. C. Tanielian, C. Wolff and M. Esch, Singlet oxygen production in water: aggregation and charge-transfer effects, J. Phys. Chem., 1996, 100, 6555–6560.

    Article  CAS  Google Scholar 

  34. A. Ogunsipe and T. Nyokong, Photophysical and photochemical studies of sulphonated non-transition metal phthalocyanines in aqueous and non-aqueous media, J. Photochem. Photobiol., A, 2005, 173, 211–220.

    Article  CAS  Google Scholar 

  35. M. C. Gomes, S. M. Woranovicz-Barreira, M. A. F. Faustino, R. Fernandes, M. G. P. M. S. Neves, A. C. Tome, N. C. M. Gomes, A. Almeida, J. A. S. Cavaleiro, A. Cunha and J. P. C. Tome, Photodynamic inactivation of Penicillium chrysogenum conidia by cationic porphyrins, Photochem. Photobiol. Sci., 2011, 10, 1735–1743.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ângela Cunha or João P. C. Tomé.

Additional information

Electronic supplementary information (ESI) available: Structural characterization of phthalocyanine NMR (1H and 19F), MALDI-TOF MS and aggregation behaviour in PBS and DMSO. See DOI: 10.1039/c5pp00147a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rocha, D.M.G.C., Venkatramaiah, N., Gomes, M.C. et al. Photodynamic inactivation of Escherichia coli with cationic ammonium Zn(ii) phthalocyanines. Photochem Photobiol Sci 14, 1872–1879 (2015). https://doi.org/10.1039/c5pp00147a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c5pp00147a

Navigation