Skip to main content

Advertisement

Log in

Inverted methoxypyridinium phthalocyanines for PDI of pathogenic bacteria

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Phthalocyanines (Pc) are photoactive molecules that can absorb and emit light in a large range of the UV-Vis spectrum with recognized potential for medical applications. Considering the biomedical applications an important limitation of these compounds is their low solubility in water. The use of suitable pyridinium groups on Pc is a good strategy to solve this drawback and to make them more effective to photoinactivate Gram-negative bacteria via a photodynamic inactivation (PDI) approach. Herein, an easy synthetic access to obtain inverted tetra- and octa-methoxypyridinium phthalocyanines (compounds 5 and 6) and also their efficiency to photoinactivate a recombinant bioluminescent strain of Escherichia coli is described. The obtained results were compared with the ones obtained when more conventional thiopyridinium phthalocyanines (compounds 7 and 8) were used. This innovative study comparing thiopyridinium and inverted methoxypyridinium moieties on cationic Pc is reported for the first time taking into account the efficiency of singlet oxygen (1O2) generation, water solubility and uptake properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. N. B. McKeown, The synthesis of symmetrical phthalocyanines, in The Porphyrin Handbook, ed. K. M. Kadish, K. M. Smith and R. Guilard, Academic Press, New York, NY, USA, 2003, vol. 15, ch. 98, pp. 61–124.

  2. A. Lyubimtsev, Z. Iqbal, G. Crucius, S. Syrbua, T. Ziegler and T. Hanack, Synthesis of glycosylated metal phthalocyanines and naphthalocyanines, J. Porphyrins Phthalocyanines, 2012, 16, 434–463.

    Article  CAS  Google Scholar 

  3. L. M. O. Lourenço, M. G. P. M. S. Neves, J. A. S. Cavaleiro and J. P. C. Tomé, Synthetic approaches to glycophthalocyanines, Tetrahedron, 2014, 70, 2681–2698.

    Article  CAS  Google Scholar 

  4. L. Wibmer, L. M. O. Lourenço, A. Roth, G. Katsukis, M. G. P. M. S. Neves, J. A. S. Cavaleiro, J. P. C. Tomé, T. Torres and D. M. Guldi, Decorating graphene nanosheets with electron accepting pyridyl phthalocyanines, Nanoscale, 2015, 7, 5674–5682.

    Article  CAS  PubMed  Google Scholar 

  5. H. J. Berthold, S. Franke, J. Thiem and T. Schotten, Ex Post Glycoconjugation of Phthalocyanines, J. Org. Chem., 2010, 75, 3859–3862.

    Article  CAS  PubMed  Google Scholar 

  6. L. M. O. Lourenço, P. M. R. Pereira, E. Maciel, M. R. M. Domingues, R. Fernandes, M. G. P. M. S. Neves, J. A. S. Cavaleiro and J. P. C. Tomé, Amphiphilic phthalocyanine–cyclodextrin conjugates for cancer photodynamic therapy, Chem. Commun., 2014, 50, 8363–8366.

    Article  Google Scholar 

  7. A. R. Soares, M. G. P. M. S. Neves, A. C. Tomé, M. C. Iglesias-de la Cruz, A. Zamarron, E. Carrasco, S. Gonzalez, J. A. S. Cavaleiro, T. Torres, D. M. Guldi and A. Juarranz, Glycophthalocyanines as Photosensitizers for Triggering Mitotic Catastrophe and Apoptosis in Cancer Cells, Chem. Res. Toxicol., 2012, 25, 940–951.

    Article  CAS  PubMed  Google Scholar 

  8. S. Silva, P. M. R. Pereira, P. Silva, F. A. A. Paz, M. A. F. Faustino, J. A. S. Cavaleiro and J. P. C. Tomé, Porphyrin and phthalocyanine glycodendritic conjugates: synthesis, photophysical and photochemical properties, Chem. Commun., 2012, 48, 3608–3610.

    Article  CAS  Google Scholar 

  9. P. M. R. Pereira, S. Silva, J. A. S. Cavaleiro, C. A. F. Ribeiro, J. P. C. Tomé and R. Fernandes, Galactodendritic Phthalocyanine Targets Carbohydrate-Binding Proteins Enhancing Photodynamic Therapy, PLoS One, 2014, 9, 1–13.

    Google Scholar 

  10. G. C. Bolfarini, M. P. Siqueira-Moura, G. J. F. Demets, P. C. Morais and A. C. Tedesco, In vitro evaluation of combined hyperthermia and photodynamic effects using magnetoliposomes loaded with cucurbituril zinc phthalocyanine complex on melanoma, J. Photochem. Photobiol., B, 2012, 115, 1–4.

    Article  CAS  Google Scholar 

  11. G. C. Bolfarini, M. P. Siqueira-Moura, G. J. F. Demets and A. C. Tedesco, Preparation, characterization, and in vitro phototoxic effect of zinc phthalocyanine cucurbit[7]uril complex encapsulated into liposomes, Dyes Pigm., 2014, 100, 162–167.

    Article  CAS  Google Scholar 

  12. J.-D. Huang, S. Wang, P.-C. Lo, W.-P. Fong, W.-H. Kod and D. K. P. Ng, Halogenated silicon(IV) phthalocyanines with axial poly(ethylene glycol) chains. Synthesisspectroscopic properties, complexation with bovine serum albumin and in vitro photodynamic activities, New J. Chem., 2004, 28, 348–354.

    Article  CAS  Google Scholar 

  13. J. B. Pereira, E. F. A. Carvalho, M. A. F. Faustino, M. G. P. M. S. Neves, J. A. S. Cavaleiro, N. C. M. Gomes, Â. Cunha, A. Almeida and J. P. C. Tomé, Phthalocyanine Thio-Pyridinium Derivatives as Antibacterial Photosensitizers, Photochem. Photobiol., 2012, 88, 537–547.

    Article  CAS  PubMed  Google Scholar 

  14. A. Almeida, Â. Cunha, M. A. F. Faustino, A. C. Tomé and M. G. P. M. S. Neves, Porphyrins as Antimicrobial Photosensitizing Agents, in Photodynamic Inactivation of Microbial Pathogens, Medical and Environmental Applications, ed. M. R. Hamblin and G. Jori, RSC Publishing, Cambridge, England, 2011, ch. 5, pp. 83–160.

  15. P. Mikula, L. Kalhotka, D. Jancula, S. Zezulka, R. Korinkova, J. Cerny, B. Marsalek and P. Toman, Evaluation of antibacterial properties of novel phthalocyanines against Escherichia coli–Comparison of analytical methods, J. Photochem. Photobiol., B, 2014, 138, 230–239.

    Article  CAS  Google Scholar 

  16. O. L. Osifeko and T. Nyokong, Applications of lead phthalocyanines embedded in electrospun fibers for the photoinactivation of Escherichia coli in water, Dyes Pigm., 2014, 111, 8–15.

    Article  CAS  Google Scholar 

  17. M. Managa, M. A. Idowu, E. Antunes and T. Nyokong, Photophysicochemical behavior and antimicrobial activity of dihydroxosilicon tris(diaquaplatinum)octacarboxyphthalocyanine, Spectrochim. Acta, Part A, 2014, 125, 147–153.

    Article  CAS  Google Scholar 

  18. Photosensitizing Compounds: Their Chemistry, Biology and Clinical Use, ed. G. Bock and S. Harnett, John Wiley, Chichester, UK, CIBA Foundation Symposium, 2008, vol. 727, pp. 1–32 and 60–130.

    Google Scholar 

  19. F. Dumoulin, M. Durmuş, V. Ahsen and T. Nyokong, Synthetic pathways to water-soluble phthalocyanines and close analogs, Coord. Chem. Rev., 2010, 254, 2792–2847.

    Article  CAS  Google Scholar 

  20. F. Ghani, J. Kristen and H. Riegler, Solubility Properties of Unsubstituted Metal Phthalocyanines in Different Types of Solvents, J. Chem. Eng. Data, 2012, 57, 439–449.

    Article  CAS  Google Scholar 

  21. N. Masilela and T. Nyokong, The synthesis and photophysical properties of novel cationic tetra pyridiloxy substituted aluminium, silicon and titanium phthalocyanines in water, J. Lumin., 2010, 130, 1787–1793.

    Article  CAS  Google Scholar 

  22. M. Durmus and T. Nyokong, Synthesis, photophysical and photochemical properties of aryloxy tetra-substituted gallium and indium phthalocyanine derivatives, Tetrahedron, 2007, 63, 1385–1394.

    Article  CAS  Google Scholar 

  23. N. L. Oleinick, A. R. Antunez, M. E. Clay, B. D. Rihter and M. E. Kenney, New phthalocyanine photosensitizers for photodynamic therapy, Photochem. Photobiol., 1993, 57, 242–247.

    Article  CAS  PubMed  Google Scholar 

  24. S. P. Zamora-León, D. W. Golde, I. I. Concha, C. I. Rivas, F. Delgado-Lopez, J. Baselga, F. Nualart and J. C. Vera, Expression of the fructose transporter GLUT5 in human breast cancer, Proc. Natl. Acad. Sci. U. S. A., 1996, 93, 1847–1852.

    Article  PubMed  PubMed Central  Google Scholar 

  25. J. D. Chandler, E. D. Williams, J. L. Slavin, J. D. Bestand and S. Rogers, Expression and localization of GLUT1 and GLUT12 in prostate carcinoma, Cancer, 2003, 97, 2035–2042.

    Article  CAS  PubMed  Google Scholar 

  26. P.-C. Lo, J.-D. Huang, D. Y. Y. Cheng, E. Y. M. Chan, W.-P. Fong, W.-H. Ko and D. K. P. Ng, New Amphiphilic Silicon(IV) Phthalocyanines as Efficient Photosensitizers for Photodynamic Therapy: Synthesis, Photophysical Properties, and in vitro Photodynamic Activities, Chem.–Eur. J., 2014, 10, 4831–4838.

    Article  CAS  Google Scholar 

  27. X. Leng, C.-F. Choi, P.-C. Lo and D. K. P. Ng, Assembling a Mixed Phthalocyanine–Porphyrin Array in Aqueous Media through Host–Guest Interactions, Org. Lett., 2007, 9, 231–234.

    Article  CAS  PubMed  Google Scholar 

  28. J.-W. Hofman, F. V. Zeeland, S. Turker, H. Talsma, S. A. G. Lambrechts, D. V. Sakharov, W. E. Hennink and C. F. V. Nostrum, Peripheral and axial substitution of phthalocyanines with solketal groups: synthesis and in vitro evaluation for photodynamic therapy, J. Med. Chem., 2007, 50, 1485–1494.

    Article  CAS  PubMed  Google Scholar 

  29. P. P. S. Lee, P. C. Lo, E. Y. M. Chan, W. P. Fong, W. H. Ko and D. K. P. Ng, Synthesis and in vitro photodynamic activity of novel galactose-containing phthalocyanines, Tetrahedron Lett., 2005, 46, 1551–1554.

    Article  CAS  Google Scholar 

  30. Q. Peng, Correlation of intracellular and intratumoural photosensitizer distribution with photodynamic effect, in Photodynamic Therapy and Fluorescence Diagnosis in Dermatology, ed. P. G. Calzavara-Pinton, R. M. Szeimies and B. Ortel, Elsevier, Amsterdam, 2001, pp. 55–66.

  31. V. Mantareva, V. Kussovski, I. Angelov, E. Borisova, L. Avramov, G. Schnurpfeil and D. Wöhrle, Photodynamic activity of water-soluble phthalocyanine zinc(II) complexes against pathogenic microorganisms, Bioorg. Med. Chem., 2007, 15, 4829–4835.

    Article  CAS  PubMed  Google Scholar 

  32. X.-J. Fu, Y. Fang and M. Yao, Antimicrobial Photodynamic Therapy for Methicillin-Resistant Staphylococcus aureus Infection, BioMed. Res. Int., 2013, 2013, 1–9.

    Google Scholar 

  33. M. A. Pereira, M. A. F. Faustino, J. P. C. Tomé, M. G. P. M. S. Neves, A. C. Tomé, J. A. S. Cavaleiro, Â. Cunha and A. Almeida, Influence of external bacterial structures in the efficiency of photodynamic inactivation by a cationic porphyrin, Photochem. Photobiol. Sci., 2014, 13, 680–690.

    Article  CAS  PubMed  Google Scholar 

  34. M.-R. Ke, J. M. Eastel, K. L. K. Ngai, Y.-Y. Cheung, P. K. S. Chan, M. Hui, D. K. P. Ng and P.-C. Lo, Photodynamic inactivation of bacteria and viruses using two monosubstituted zinc(II) phthalocyanines, Eur. J. Med. Chem., 2014, 84, 278–283.

    Article  CAS  PubMed  Google Scholar 

  35. M. B. Spesia, M. Rovera and E. N. Durantini, Photodynamic inactivation of Escherichia coli and Streptococcus mitis by cationic zinc(II) phthalocyanines in media with blood derivatives, Eur. J. Med. Chem., 2010, 45, 2198–2205.

    Article  CAS  PubMed  Google Scholar 

  36. J. C. Junqueira, A. O. C. Jorge, J. O. Barbosa, R. D. Rossoni, S. F. G. Vilela, F. A. C. B. P. Costa, L. Primo, J. M. Gonçalves, A. C. Tedesco and J. M. A. H. Suleiman, Photodynamic inactivation of biofilms formed by Candida spp., Trichosporon mucoides, and Kodamaea ohmeri by cationic nanoemulsion of zinc 2,9,16,23-tetrakis(phenylthio)-29H, 31H-phthalocyanine (ZnPc), Lasers Med. Sci., 2012, 27, 1205–1212.

    Article  CAS  PubMed  Google Scholar 

  37. E. Alves, C. M. B. Carvalho, J. P. C. Tomé, M. A. F. Faustino, M. G. P. M. S. Neves, A. C. Tomé, J. A. S. Cavaleiro, Â. Cunha, S. Mendo and A. Almeida, Photodynamic inactivation of recombinant bioluminescent Escherichia coli by cationic porphyrins under artificial and solar irradiation, J. Ind. Microbiol. Biotechnol., 2008, 35, 1447–1454.

    Article  CAS  PubMed  Google Scholar 

  38. E. Alves, L. Costa, C. M. B. Carvalho, J. P. C. Tomé, M. A. F. Faustino, M. G. P. M. S. Neves, A. C. Tomé, J. A. C. Cavaleiro, Â. Cunha and A. Almeida, Charge effect on the photoinactivation of Gram-negative and Gram-positive bacteria by cationic meso-substituted porphyrins, BMC Microbiol., 2009, 9, 1–13.

    Article  Google Scholar 

  39. S. Schastak, S. Ziganshyna, B. Gitter, P. Wiedemann and T. Claudepierre, Efficient Photodynamic Therapy against Gram-Positive and Gram-Negative Bacteria Using THPTS, a Cationic Photosensitizer Excited by Infrared Wavelength, PLoS One, 2010, 5, 1–8.

    Article  CAS  Google Scholar 

  40. Z. Malik, H. Ladan and Y. Nitzan, Photodynamic inactivation of Gram-negative bacteria: problems and possible solutions, J. Photochem. Photobiol., B, 1992, 14, 262–266.

    Article  CAS  Google Scholar 

  41. N. A. Kuznetsova, D. A. Makarov, O. L. Kaliya and G. N. Vorozhtsov, Photosensitized oxidation by dioxygen as the base for drinking water disinfection, J. Hazard. Mater., 2007, 146, 487–491.

    Article  CAS  PubMed  Google Scholar 

  42. A. Taraszkiewicz, M. Grinholc, K. P. Bielawski, A. Kawiak and J. Nakonieczna, Imidazoacridinone Derivatives as Efficient Sensitizers in Photoantimicrobial Chemotherapy, Appl. Environ. Microbiol., 2013, 79, 3692–3702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. M. Q. Mesquita, J. C. J. M. D. S. Menezes, M. G. P. M. S. Neves, A. C. Tomé, J. A. S. Cavaleiro, Â. Cunha, A. Almeida, S. Hackbarth, B. Röder and M. A. F. Faustino, Photodynamic inactivation of bioluminescent Escherichia coli by neutral and cationic pyrrolidine-fused chlorins and isobacteriochlorins, Bioorg. Med. Chem. Lett., 2014, 24, 808–812.

    Article  CAS  PubMed  Google Scholar 

  44. M. Q. Mesquita, J. C. J. M. D. S. Menezes, S. M. G. Pires, M. G. P. M. S. Neves, M. M. Q. Simões, A. C. Tomé, J. A. S. Cavaleiro, Â. Cunha, A. Almeida, A. L. Daniel-da-Silva and M. A. F. Faustino, Pyrrolidine-fused chlorin photosensitizer immobilized on solid supports for the photoinactivation of Gram negative bacteria, Dyes Pigm., 2014, 110, 123–133.

    Article  CAS  Google Scholar 

  45. J. Almeida, J. P. C. Tomé, M. G. P. M. S. Neves, A. C. Tomé, J. A. S. Cavaleiro, A. Cunha, L. Costa, M. A. F. Faustino and A. Almeida, Photodynamic inactivation of multidrug-resistant bacteria in hospital wastewaters: influence of residual antibiotics, Photochem. Photobiol. Sci., 2014, 13, 626–633.

    Article  CAS  PubMed  Google Scholar 

  46. P. S. Vincett, E. M. Voigt and K. E. Rieckhoff, Phosphorescence and Fluorescence of Phthalocyanines, J. Chem. Phys., 1971, 55, 4131–4140.

    Article  CAS  Google Scholar 

  47. P. M. R. Pereira, J. J. Carvalho, S. Silva, J. A. S. Cavaleiro, R. J. Schneider, R. Fernandes and J. P. C. Tomé, Porphyrin conjugated with serum albumins and monoclonal antibodies boosts efficiency in targeted destruction of human bladder cancer cells, Org. Biomol. Chem., 2014, 12, 1804–1811.

    Article  CAS  PubMed  Google Scholar 

  48. J. Sangster, Octanol-Water Partition Coefficients of Simple Organic Compounds, J. Phys. Chem. Ref. Data, 1989, 18, 1111–1227.

    Article  CAS  Google Scholar 

  49. A. Aggarwal, S. Thompson, S. Singh, B. Newton, A. Moore, R. Gao, X. Gu, S. Mukherjee and C. M. Drain, Photophysics of Glycosylated Derivatives of a Chlorin, Isobacteriochlorin and Bacteriochlorin for Photodynamic Theragnostics: Discovery of a Two-photon-absorbing Photosensitizer, Photochem. Photobiol., 2014, 90, 419–430.

    Article  CAS  PubMed  Google Scholar 

  50. T. N. Demidova and M. R. Hamblin, Photodynamic Inactivation of Bacillus Spores, Mediated by Phenothiazinium Dyes, Appl. Environ. Microbiol., 2005, 71, 6918–6925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. A. Segalla, C. D. Borsarelli, S. E. Braslavsky, J. D. Spikes, G. Roncucci, D. Dei, G. Chiti, G. Jori and E. Reddi, Photophysical, photochemical and antibacterial photosensitizing properties of a novel octacationic Zn(II)-phthalocyanine, Photochem. Photobiol. Sci., 2002, 1, 641–648.

    Article  CAS  PubMed  Google Scholar 

  52. M. Soncin, C. Fabris, A. Busetti, D. Dei, D. Nistri, G. Roncucci and G. Jori, Approaches to selectivity in the Zn(II)–phthalocyanine-photosensitized inactivation of wild-type and antibiotic-resistant Staphylococcus aureus, Photochem. Photobiol. Sci., 2002, 1, 815–819.

    Article  CAS  PubMed  Google Scholar 

  53. D. C. S. Costa, V. F. Pais, A. M. S. Silva, J. A. S. Cavaleiro, U. Pischel and J. P. C. Tomé, Cationic porphyrins with inverted pyridinium groups and their fluorescence properties, Tetrahedron Lett., 2014, 55, 4156–4159.

    Article  CAS  Google Scholar 

  54. A. Kocak and S. Kurbanli, Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry, Synth. Commun., 2007, 37, 3697–3708.

    Article  CAS  Google Scholar 

  55. T. K. Khan, M. R. Rao and M. Ravikanth, Synthesis and Photophysical Properties of 3,5-Bis(oxopyridinyl)- and 3,5-Bis(pyridinyloxy)-Substituted Boron-Dipyrromethenes, Eur. J. Org. Chem., 2010, 2314–2323.

    Google Scholar 

  56. D. Samaroo, M. Vinodu, X. Chen and C. M. Drain, meso-Tetra(pentafluorophenyl)porphyrin as an efficient platform for combinatorial synthesis and the selection of new photodynamic therapeutics using a cancer cell line, J. Comb. Chem., 2007, 9, 998–1011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. M. C. Gomes, S. Silva, M. A. F. Faustino, M. G. P. M. S. Neves, A. Almeida, J. A. S. Cavaleiro, J. P. C. Tomé and Â. Cunha, Cationic galactoporphyrin photosensitisers against UV-B resistant bacteria: oxidation of lipids and proteins by 1O2, Photochem. Photobiol. Sci., 2013, 12, 262–271.

    Article  CAS  PubMed  Google Scholar 

  58. L. Costa, C. M. B. Carvalho, M. A. F. Faustino, M. G. P. M. S. Neves, J. P. C. Tomé, A. C. Tomé, J. A. S. Cavaleiro, A. Cunha and A. Almeida, Sewage bacteriophage inactivation by cationic porphyrins: influence of light parameters, Photochem. Photobiol. Sci., 2010, 9, 1126–1133.

    Article  CAS  PubMed  Google Scholar 

  59. M. Merchat, G. Bertolini, P. Giacomini, A. Villanueva and G. Jori, Meso-substituted cationic porphyrins as efficient photosensitizers of gram-positive and gram-negative bacteria, J. Photochem. Photobiol., B, 1996, 32, 153–157.

    Article  CAS  Google Scholar 

  60. D. Lazzeri, M. Rovera, L. Pascual and E. N. Durantin, Photodynamic Studies and Photoinactivation of Escherichia coli Using meso-Substituted Cationic Porphyrin Derivatives with Asymmetric Charge Distribution, Photochem. Photobiol., 2004, 80, 286–293.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João P. C. Tomé.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c5pp00145e

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lourenço, L.M.O., Sousa, A., Gomes, M.C. et al. Inverted methoxypyridinium phthalocyanines for PDI of pathogenic bacteria. Photochem Photobiol Sci 14, 1853–1863 (2015). https://doi.org/10.1039/c5pp00145e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c5pp00145e

Navigation