Skip to main content
Log in

First detection of the presence of naturally occurring grapevine downy mildew in the field by a fluorescence-based method

  • Communication
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Early detection of fungal pathogen presence in the field would help to better time or avoid some of the fungicide treatments used to prevent crop production losses. We recently introduced a new phytoalexin-based method for a non-invasive detection of crop diseases using their fluorescence. The causal agent of grapevine downy mildew, Plasmopara viticola, induces the synthesis of stilbenoid phytoalexins by the host, Vitis vinifera, early upon infection. These stilbenoids emit violet-blue fluorescence under UV light. A hand-held solid-state UV-LED-based field fluorimeter, named Multiplex 330, was used to measure stilbenoid phytoalexins in a vineyard. It allowed us to non-destructively detect and monitor the naturally occurring downy mildew infections on leaves in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Notes and references

  1. R. Muthmann, The use of plant protection products in the European Union–Data 1992–2003, Office for Official Publications of the European Communities - Eurostat, Luxembourg, 2007.

    Google Scholar 

  2. C. Gessler, I. Pertot and M. Perazzolli, Plasmopara viticola: a review of knowledge on downy mildew of grapevine and effective disease management, Phytopathol. Mediterr., 2011, 50, 3–44.

    Google Scholar 

  3. A. Poutaraud, G. Latouche, S. Martins, S. Meyer, D. Merdinoglu and Z. G. Cerovic, Fast and local assessment of stilbene content in grapevine leaf by in vivo fluorometry, J. Agric. Food Chem., 2007, 55, 4913–4920.

    Article  CAS  Google Scholar 

  4. S. Bellow, G. Latouche, S. C. Brown, A. Poutaraud and Z. G. Cerovic, In vivo localization at the cellular level of stilbene fluorescence induced by Plasmopara viticola in grapevine leaves, J. Exp. Bot., 2012, 63, 3697–3707.

    Article  CAS  Google Scholar 

  5. S. Bellow, G. Latouche, S. C. Brown, A. Poutaraud and Z. G. Cerovic, Optical detection of downy mildew in grapevine leaves: daily kinetics of autofluorescence upon infection, J. Exp. Bot., 2013, 64, 333–341.

    Article  CAS  Google Scholar 

  6. G. Latouche, S. Bellow, A. Poutaraud, S. Meyer and Z. G. Cerovic, Influence of constitutive phenolic compounds on the response of grapevine (Vitis vinifera L.) leaves to infection by Plasmopara viticola, Planta, 2013, 237, 351–361.

    Article  CAS  Google Scholar 

  7. G. Latouche, A. Poutaraud, S. Bellow, S. Evain, L. Ley, S. C. Brown and Z. G. Cerovic, Detection of downy mildew in the field on grapevine leaves using a new portable fluorescence sensor, in 7th International Workshop on Grapevine Downy and Powdery Mildew, 2014, pp. 118–121.

    Google Scholar 

  8. F. W. J. Nutter, N. van Rij, S. K. Eggenberger and N. Holah, Spatial and temporal dynamics of plant pathogens, in Precision Crop Protection–the Challenge and Use of Heterogeneity, ed. E.-C. Oerke, R. Gerhards, G. Menz and R. A. Sikora, Springer, Dordrecht, Heidelberg, London, New York, 2010, pp. 27–50.

  9. A. Calonnec, P. Cartolaro and J. Chadoeuf, Highlighting features of spatiotemporal spread of powdery mildew epidemics in the vineyard using statistical modeling on field experimental data, Phytopathology, 2009, 99, 411–422.

    Article  CAS  Google Scholar 

  10. N. Ben Ghozlen, Z. G. Cerovic, C. Germain, S. Toutain and G. Latouche, Non-destructive optical monitoring of grape maturation by proximal sensing, Sensors, 2010, 10, 10040–10068.

    Article  Google Scholar 

  11. Z. G. Cerovic, G. Samson, F. Morales, N. Tremblay and I. Moya, Ultraviolet-induced fluorescence for plant monitoring: present state and prospects, Agronomie: Agric. Environ., 1999, 19, 543–578.

    Article  Google Scholar 

  12. V. Rossi and T. Caffi, The role of rain in dispersal of the primary inoculum of Plasmopara viticola, Phytopathology, 2012, 102, 158–165.

    Article  Google Scholar 

  13. R. S. Jackson, Wine Science - Principles and Applications, Elsevier (Academic Press), 2008.

    Google Scholar 

  14. H. R. Schultz, Extension of a Farquhar model for limitations of leaf photosynthesis induced by light environment, phenology and leaf age in grapevines (Vitis vinifra L. cvv. White Riesling and Zinfandel), Funct. Plant Biol., 2003, 30, 673–687.

    Article  CAS  Google Scholar 

  15. J. E. Jackson and J. W. Palmer, Interception of light by model hedgerow orchards in relation to latitude, time of the year and hedgerow configuration and orientation, J. Appl. Ecol., 1972, 9, 341–358.

    Article  Google Scholar 

  16. S. E. Spayd, J. M. Tarara, D. L. Mee and J. C. Ferguson, Separation of sunlight and temperature effects on the composition of Vitis vinifera cv. Merlot berries, Am. J. Enol. Vitic., 2002, 53, 171–182.

    CAS  Google Scholar 

  17. A.-K. Mahlein, E.-C. Oerke, U. Steiner and H.-W. Dehne, Recent advances in sensing plant diseases for precision crop protection, Eur. J. Plant Pathol., 2012, 133, 197–209.

    Article  CAS  Google Scholar 

  18. F. Mazzetto, A. Calcante, A. Mena and A. Vercesi, Integration of optical and analogue sensors for monitoring canopy health and vigour in precision viticulture, Precis. Agric., 2010, 11, 636–649.

    Article  Google Scholar 

  19. B. Valeur, Molecular Fluorescence. Principles and Applications, Wiley-VCH, Weinheim, New York, Chichester, Brisbane, Singapore, Toronto, 2002.

    Google Scholar 

  20. L. Bodria, M. Fiala, R. Oberti and E. Naldi, Chlorophyll fluorescence sensing for early detection of crop’s diseases symptoms, in ASAE Annual International Meeting, ASAE, 2002, pp. 1–10.

    Google Scholar 

  21. C. Bravo, D. Moshou, R. Oberti, J. S. West, A. McCartney, L. Bodria and H. Ramon, Detection of foliar disease in the field by the fusion of measurements made by optical sensors, in ASAE Annual International Meeting/CIGR XVth World Congress, ASAE, 2002, pp. 1–12.

    Google Scholar 

  22. J. J. Belasque, M. C. G. Gasparoto and L. G. Marcassa, Detection of mechanical and disease stresses in citrus plants by fluorescence spectroscopy, Appl. Opt., 2008, 47, 1922–1926.

    Article  Google Scholar 

  23. W. Lüdeker, H.-G. Dahn and K. P. Günther, Detection of fungal infection of plants by laser-induced fluorescence: An attempt to use remote sensing, J. Plant Physiol., 1996, 148, 579–585.

    Article  Google Scholar 

  24. F. Hahn, Actual pathogen detection: sensors and algorithms - a review, Algorithms, 2009, 2, 301–338.

    Article  Google Scholar 

  25. S. Sankaran, A. Mishra, R. Ehsani and C. Davis, A review of advanced techniques for detecting plant diseases, Comput. Electron. Agric., 2010, 72, 1–13.

    Article  Google Scholar 

  26. K. Yu, G. Leufen, M. Hunsche, G. Noga, X. Chen and G. Bareth, Investigation of leaf diseases and estimation of chlorophyll concentration in seven barley varieties using fluorescence and hyperspectral indices, Rem. Sens., 2014, 6, 64–86.

    Article  Google Scholar 

  27. H.-E. Nilsson, Remote sensing and image analysis in plant pathology, Annu. Rev. Phytopathol., 1995, 15, 489–527.

    Article  Google Scholar 

  28. M. Stoll, H. R. Schultz, G. Baecker and B. Berkelmann-Loehnertz, Early pathogen detection under different water status and the assessment of spray application in vineyards through the use of thermal imagery, Precis. Agric., 2008, 9, 407–417.

    Article  Google Scholar 

  29. L. Csefalvay, G. Di Gaspero, K. Matous, D. Bellin, B. Ruperti and J. Olejnickova, Pre-symptomatic detection of Plasmopara viticola infection in grapevine leaves using chlorophyll fluorescence imaging, Eur. J. Plant Pathol., 2009, 125, 291–302.

    Article  CAS  Google Scholar 

  30. S. Debuisson, C. Germain, O. Garcia, L. Panigai, D. Moncomble, M. Le Moigne, E. M. Fadaili, S. Evain and Z. G. Cerovic, Using Multiplex® and greenseeker™ to manage spatial variation of vine vigor in Champagne, in 10th ICPA, 2010, pp. 1–21.

    Google Scholar 

  31. L. Longchamps and R. Khosla, Early detection of nitrogen variability in maize using fluorescence, Agron. J., 2014, 106, 511.

    Article  CAS  Google Scholar 

  32. N. Tremblay, Sensing technologies in horticulture: options and challenges, Chron. Hort., 2013, 53, 10–14.

    Google Scholar 

  33. J. Chong, A. Poutaraud and P. Hugueney, Metabolism and roles of stilbenes in plants, Plant Sci., 2009, 177, 143–155.

    Article  CAS  Google Scholar 

  34. V. Rossi, F. Salinari, S. Poni, T. Caffi and T. Bettati, Addressing the implementation problem in agricultural decision support systems: the example of vite.net®, Comput. Electron. Agric., 2014, 100, 88–99.

    Article  Google Scholar 

  35. M. Raynal, C. Debord, S. Guittard and M. Vergnes, Epicure, a geographic information decision support system applied on downy and powdery risks of mildews epidemics on the Bordeaux vineyard, in 6th International Workshop on Grapevine Downy and Powdery Mildew, INRA, 2010, pp. 144–146.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoran G. Cerovic.

Additional information

The article is a contribution to the 16th ICP Cordoba Congress publications.

Electronic supplementary information (ESI) available: Fig. S1. Temperature and precipitation for the surveyed vineyard in 2014; Fig. S2. Violet-blue fluorescence signals during the period before the onset of downy mildew infection compared to the black rot disease incidence; Fig. S3. Example of the variability of the violet-blue fluorescence signals. See DOI: 10.1039/c5pp00121h

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latouche, G., Debord, C., Raynal, M. et al. First detection of the presence of naturally occurring grapevine downy mildew in the field by a fluorescence-based method. Photochem Photobiol Sci 14, 1807–1813 (2015). https://doi.org/10.1039/c5pp00121h

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c5pp00121h

Navigation