Skip to main content

Advertisement

Log in

Evidence of additional excitation energy transfer pathways in the phycobiliprotein antenna system of Acaryochloris marina

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

To improve the energy conversion efficiency of solar organic cells, the clue may lie in the development of devices inspired by an efficient light harvesting mechanism of some aquatic photosynthetic microorganisms that are adapted to low light intensity. Consequently, we investigated the pathways of excitation energy transfer (EET) from successive light harvesting pigments to the low energy level inside the phycobiliprotein antenna system of Acaryochloris marina, a cyanobacterium, using a time resolved absorption difference spectroscopy with a resolution time of 200 fs. The objective was to understand the actual biochemical process and pathways that determine the EET mechanism. Anisotropy of the EET pathway was calculated from the absorption change trace in order to determine the contribution of excitonic coupling. The results reveal a new electron energy relaxation pathway of 14 ps inside the phycocyanin component, which runs from phycocyanin to the terminal emitter. The bleaching of the 660 nm band suggests a broader absorption of the terminal emitter between 660 nm and 675 nm. Further, there are trimer depolarization kinetics of 450 fs and 500 fs in high and low ionic strength, respectively, which arise from the relaxation of the β84 and α84 in adjacent monomers of phycocyanin. Under conditions of low ionic strength buffer solution, the evolution of the kinetic amplitude during the depolarization of the trimer is suggestive of trimer conservation within the phycocyanin hexamer. The anisotropy values were 0.38 and 0.40 in high and in low ionic strength, respectively, indicating that there is no excitonic delocalization in the high energy level of phycocyanin hexamers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, M. T. Borgström, Science 2013 339 1057–1060.

    Article  CAS  Google Scholar 

  2. H. Miyashit, H. Ikemoto, N. Kurano, K. Adachi, M. Chihara, S. Miyachi, Nature 1996 383 402–402.

    Article  Google Scholar 

  3. C. Chen, W. Cai, M. Long, B. Zhou, Y. Wu, D. Wu, Y. Feng, ACS Nano 2010 4 6425–6432.

    Article  CAS  Google Scholar 

  4. A. W. D. Larkum, M. Kühl, Trends Plant Sci. 2005 10 355–357.

    Article  CAS  Google Scholar 

  5. M. Akiyama, H. Miyashita, H. Kise, T. Watanabe, S. Miyachi, M. Kobayashi, Anal. Sci. 2001 17 205–208.

    Article  CAS  Google Scholar 

  6. Q. Hu, J. Marquardt, I. Iwasaki, H. Miyashita, N. Kurano, E. Morschel, S. Miyachi, Biochim. Biophys. Acta, Bioenerg. 1999 1412 250–261.

    Article  CAS  Google Scholar 

  7. E. Romero, R. Augulis, V. I. Novoderezhkin, M. Ferretti, J. Thieme, D. Zigmantas, R. van Grondelle, Nat. Phys. 2014 10 676–682.

    Article  CAS  Google Scholar 

  8. P. Apotoli, Fresenius’ J. Anal. Chem. 1999 362 499–504.

    Article  Google Scholar 

  9. N. Adir, Photosynth. Res. 2005 85 15–32.

    Article  CAS  Google Scholar 

  10. C. Theiss, F.-J. Schmitt, J. Pieper, C. Nganou, M. Grehn, M. Vitali, R. Olliges, H. J. Eichler, H.-J. Eckert, J. Plant Physiol. 2011 168 1473–1487.

    Article  CAS  Google Scholar 

  11. H. Liu, H. Zhang, D. M. Niedzwiedzki, M. Prado, G. He, M. L. Gross, R. E. Blankenship, Science 2013 342 1104–1107.

    Article  CAS  Google Scholar 

  12. C. Nganou, J. Chem. Phys. 2013 139 10.1063/1.4813803.

  13. A. R. Holzwarth, E. Bittersmann, W. Reuter, W. Wehrmeyer, Biophys. J. 1990 57 133–145.

    Article  CAS  Google Scholar 

  14. K.-H. Zhao, P. Su, S. Böhm, B. Song, M. Zhou, C. Bubenzer, H. Scheer, Biochim. Biophys. Acta, Bioenerg. 2005 1706 81–87.

    Article  CAS  Google Scholar 

  15. I. H. M. van Stokkum, D. S. Larsen, R. van Grondelle, Biochim. Biophys. Acta, Bioenerg. 2004 1657 82–104.

    Article  Google Scholar 

  16. J.-m. Zhang, J.-q. Zhao, L.-j. Jiang, X.-g. Zheng, F.-l. Zhao, H.-z. Wang, Biochim. Biophys. Acta, Bioenerg. 1997 1320 285–296.

    Article  CAS  Google Scholar 

  17. Å. Sandström, T. Gillbro, V. Sundström, R. Fischer, H. Scheer, Biochim. Biophys. Acta, Bioenerg. 1988 933 42–53.

    Article  Google Scholar 

  18. M. Mimuro, C. Lipschultz, E. Gantt, Biochim. Biophys. Acta, Bioenerg. 1986 852 126–132.

    Article  CAS  Google Scholar 

  19. D. J. Lundell, A. N. Glazer, J. Biol. Chem. 1983 258 8708–8713.

    Article  CAS  Google Scholar 

  20. Z. Petrasek, F.-J. Schmitt, C. Theiss, J. Huyer, M. Chen, A. Larkum, H. J. Eichler, K. Kemnitz, H.-J. Eckert, Photochem. Photobiol. Sci. 2005 4 1016–1022.

    Article  CAS  Google Scholar 

  21. T. Gillbro, Å. Sandström, V. Sundström, J. Wendler, A. R. Holzwarth, Biochim. Biophys. Acta, Bioenerg. 1985 808 52–65.

    Article  CAS  Google Scholar 

  22. A. R. Holzwarth, J. Wendler, G. W. Suter, Biophys. J. 1987 51 1–12.

    Article  CAS  Google Scholar 

  23. M. D. Edington, R. E. Riter, W. F. Beck, J. Phys. Chem. 1996 100 14206–14217.

    Article  CAS  Google Scholar 

  24. J. R. Lakowicz, Plasmonics 2006 1 5–33.

    Article  CAS  Google Scholar 

  25. M. D. Edington, R. E. Riter, W. F. Beck, J. Phys. Chem. 1995 99 5699–15704.

    Article  Google Scholar 

  26. R. MacColl, Biochim. Biophys. Acta, Bioenerg. 2004 1657 73–81.

    Article  CAS  Google Scholar 

  27. M. P. Debreczeny, K. Sauer, J. Zhou, D. A. Bryant, J. Phys. Chem. 1993 97 9852–9862.

    Article  CAS  Google Scholar 

  28. K. Sauer, H. Scheer, Biochim. Biophys. Acta, Bioenerg. 1988 157–170.

    Google Scholar 

  29. T. Gillbro, A. V. Sharkov, I. V. Kryukov, E. V. Khoroshilov, P. G. Kryukov, R. Fischer, H. Scheer, Biochim. Biophys. Acta, Bioenerg. 1993 1140 321–326.

    Article  CAS  Google Scholar 

  30. M. P. Debreczeny, K. Sauer, J. Zhou, D. A. Bryant, J. Phys. Chem. 1995 99 8420–8431.

    Article  CAS  Google Scholar 

  31. M. Chen, M. Floetenmeyer, T. S. Bibby, FEBS Lett. 2009 583 2535–2539.

    Article  CAS  Google Scholar 

  32. A. M. Weiner, Rev. Sci. Instrum. 2000 71 1929–1960.

    Article  CAS  Google Scholar 

  33. C. Nganou, L. David, R. Meinke, N. Adir, J. Maultzsch, M. Mkandawire, D. Pouhè, C. Thomsen, J. Chem. Phys. 2014 140 10.1063/1.4866293.

  34. A. Bandyopadhyay, M. J. Deen, L. E. Tarof, W. Clark, IEEE J. Quantum Electron. 1998 34 691–699.

    Article  CAS  Google Scholar 

  35. M. J. Deen, and P. K. Basu, Silicon Photonics: Fundamentals and Devices, John Wiley & Sons, 2012, 10.1002/9781119945161.ch1.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mkandawire.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nganou, A.C., David, L., Adir, N. et al. Evidence of additional excitation energy transfer pathways in the phycobiliprotein antenna system of Acaryochloris marina. Photochem Photobiol Sci 14, 429–438 (2015). https://doi.org/10.1039/c4pp00352g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c4pp00352g

Navigation