Skip to main content

Advertisement

Log in

Variety in excitation energy transfer processes from phycobilisomes to photosystems I and II

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The light-harvesting antennas of oxygenic photosynthetic organisms capture light energy and transfer it to the reaction centers of their photosystems. The light-harvesting antennas of cyanobacteria and red algae, called phycobilisomes (PBSs), supply light energy to both photosystem I (PSI) and photosystem II (PSII). However, the excitation energy transfer processes from PBS to PSI and PSII are not understood in detail. In the present study, the energy transfer processes from PBS to PSs in various cyanobacteria and red algae were examined in vivo by selectively exciting their PSs or PBSs, and measuring the resulting picosecond to nanosecond time-resolved fluorescences. By observing the delayed fluorescence spectrum of PBS-selective excitation in Arthrospira platensis, we demonstrated that energy transfer from PBS to PSI via PSII (PBS→PSII→PSI transfer) occurs even for PSI trimers. The contribution of PBS→PSII→PSI transfer was species dependent, being largest in the wild-type of red alga Pyropia yezoensis (formerly Porphyra yezoensis) and smallest in Synechococcus sp. PCC 7002. Comparing the time-resolved fluorescence after PSs- and PBS-selective excitation, we revealed that light energy flows from CP43 to CP47 by energy transfer between the neighboring PSII monomers in PBS–PSII supercomplexes. We also suggest two pathways of energy transfer: direct energy transfer from PBS to PSI (PBS→PSI transfer) and indirect transfer through PSII (PBS→PSII→PSI transfer). We also infer that PBS→PSI transfer conveys light energy to a lower-energy red chlorophyll than PBS→PSII→PSI transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

APC:

Allophycocyanin

Chl:

Chlorophyll

GM:

Green mutant

PBS:

Phycobilisome

PC:

Phycocyanin

PE:

Phycoerythrin

PS:

Photosystem

TRFS:

Time-resolved fluorescence spectrum (spectra)

WT:

Wild-type

References

  • Adir N (2005) Elucidation of the molecular structures of components of the phycobilisome: reconstructing a giant. Photosynth Res 85:15–32

    Article  CAS  PubMed  Google Scholar 

  • Akimoto S, Yokono M, Hamada F, Teshigahara A, Aikawa S, Kondo A (2012) Adaptation of light-harvesting systems of Arthrospira platensis to light conditions, probed by time-resolved fluorescence spectroscopy. Biochim Biophys Acta 1817:1483–1489

    Article  CAS  PubMed  Google Scholar 

  • Akimoto S, Yokono M, Yokono E, Aikawa S, Kondo A (2014) Short-term light adaptation of a cyanobacterium Synechocystis sp. PCC 6803, probed by time-resolved fluorescence spectroscopy. Plant Physiol Biochem 81:149–154

    Article  CAS  PubMed  Google Scholar 

  • Allen JF, Sanders CE, Holmes NG (1985) Correlation of membrane protein phosphorylation with excitation energy distribution in the cyanobacterium Synechococcus 6301. FEBS Lett 193:271–275

    Article  CAS  Google Scholar 

  • Arteni AA, Liu LN, Aartsma TJ, Zhang YZ, Zhou BC, Boekema EJ (2008) Structure and organization of phycobilisomes on mem-branes of the red alga Porphyridium cruentum. Photosynth Res 95:169–174

    Article  CAS  PubMed  Google Scholar 

  • Arteni AA, Ajlani G, Boekema EJ (2009) Structural organisation of phycobilisomes from Synechocystis sp. strain PCC6803 and their interaction with the membrane. Biochim Biophys Acta 1787:272–279

    Article  CAS  PubMed  Google Scholar 

  • Bittersmann E, Vermaas W (1991) Fluorescence lifetime studies of cyanobacterial photosystem II mutants. Biochim Biophys Acta 1098:105–116

    Article  CAS  Google Scholar 

  • Bruce D, Brimble S, Bryant DA (1989) State transitions in a phycobilisome-less mutant of the cyanobacterium Synechococcus sp. PCC 7002. Biochim Biophys Acta 974:66–73

    Article  CAS  PubMed  Google Scholar 

  • Gantt E (1981) Phycobilisomes. Annu Rev Plant Physiol 32:327–347

    Article  CAS  Google Scholar 

  • Gardian Z, Bumba L, Schrofel A, Herbstova M, Nebesarova J, Vacha F (2007) Organisation of photosystem I and photosystem II in red alga Cyanidium caldarium: encounter of cyanobacterial and higher plant concepts. Biochim Biophys Acta 1767:725–731

    Article  CAS  PubMed  Google Scholar 

  • Glazer AN (1984) Phycobilisome: a macromolecular complex optimized for light energy-transfer. Biochim Biophys Acta 768:29–51

    Article  CAS  Google Scholar 

  • Kruip J, Bald D, Boekema E, Rögner M (1994) Evidence for the existence of trimeric and monomeric photosystem I complexes in thylakoid membranes from cyanobacteria. Photosynth Res 40:279–286

    Article  CAS  PubMed  Google Scholar 

  • Ley AC, Butler WL (1977) Energy transfer from photosystem II to photosystem I in Porphyridium cruentum. Biochim Biophys Acta 462:290–294

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Zhang H, Niedzwiedzki DM, Prado M, He G, Gross ML, Blankenship RE (2013) Phycobilisomes supply excitations to both photosystems in a megacomplex in cyanobacteria. Science 342:1104–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McConnell MD, Koop R, Vasil’ev S, Bruce D (2002) Regulation of the distribution of chlorophyll and phycobilin-absorbed excitation energy in cyanobacteria. A structure-based model for the light state transition. Plant Physiol 130:1201–1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mimuro M, Yamazaki I, Tamai N, Katoh T (1989) Excitation energy transfer in phycobilisomes at −196 °C isolated from the cyanobacterium Anabaena variabilis (M-3): evidence for the plural transfer pathways to the terminal emitters. Biochim Biophys Acta 973:153–162

    Article  CAS  Google Scholar 

  • Mimuro M, Akimoto S, Tomo T, Yokono M, Miyashita H, Tsuchiya T (2007) Delayed fluorescence observed in the nanosecond time region at 77 K originates directly from the photosystem II reaction center. Biochim Biophys Acta 1767:327–334

    Article  CAS  PubMed  Google Scholar 

  • Mimuro M, Yokono M, Akimoto S (2010) Variations in photosystem I properties in the primordial cyanobacterium Gloeobacter violaceus PCC 7421. Photochem Photobiol 86:62–69

    Article  CAS  PubMed  Google Scholar 

  • Mörschel E, Schatz GH (1987) Correlation of Photosystem 2 complexes with exoplasmatic freeze-fracture particles of thylakoids of the cyanobacterium Synechococcus sp. Planta 172:145–154

    Article  PubMed  Google Scholar 

  • Mullineaux CW (2008) Phycobilisome-reaction centre interaction in cyanobacteria. Photosynth Res 95:175–182

    Article  CAS  PubMed  Google Scholar 

  • Mullineaux CW, Tobin MJ, Jones GR (1997) Mobility of photosynthetic complexes in thylakoid membranes. Nature 390:421–424

    Article  CAS  Google Scholar 

  • Murata N (1969) Control of excitation transfer in photosynthesis. I. Light-induced change of chlorophyll a fluorescence in Porphyridium cruentum. Biochim Biophys Acta 172:242–251

    Article  CAS  PubMed  Google Scholar 

  • Murata N, Satoh K (1986) Absorption and fluorescence emission by intact cells, chloroplasts, and chlorophyll–protein complexes. In: Govindjee, Amesz J, Fork DC (eds) Light emission by plants and bacteria. Academic Press, Orlando, pp 137–159

    Chapter  Google Scholar 

  • Niwa K, Kikuchi N, Iwabuchi M, Aruga Y (2004) Morphological and AFLP varation of Porphyra yezoensis Ueda form. narawaensis Miura (Bangiales, Rhodophyta). Phycol Res 41:294–304

    Article  Google Scholar 

  • Niwa K, Hayashi Y, Abe T, Aruga Y (2009) Induction and isolation of pigmentation mutants of Porphyra yezoensis (Bangiales, Rhodophyta) by heavy-ion beam irradiation. Phycol Res 57:194–202

    Article  CAS  Google Scholar 

  • Olive J, Ajlani G, Astier C, Recouvreur M, Vernotte C (1997) Ultrastructure and light adaptation of phycobilisome mutants of Synechocystis PCC 6803. Biochim Biophys Acta 1319:275–282

    Article  CAS  Google Scholar 

  • Shimada Y, Tsuchiya T, Akimoto S, Tomo T, Fukuya M, Tanaka K, Mimuro M (2008) Spectral properties of the CP43-deletion mutant of Synechocystis sp. PCC 6803. Photosynth Res 98:303–314

    Article  CAS  PubMed  Google Scholar 

  • Shubin VV, Tsuprun VL, Bezsmertnaya IN, Karapetyan NV (1993) Trimeric forms of the photosystem I reaction center complex pre-exist in the membranes of the cyanobacterium Spirulina platensis. FEBS Lett 334:79–82

    Article  CAS  PubMed  Google Scholar 

  • Tomo T, Shinoda T, Chen M, Allakhverdiev SI, Akimoto S (2014) Energy transfer processes in chlorophyll f-containing cyanobacteria using time-resolved fluorescence spectroscopy on intact cells. Biochim Biophys Acta 1837:1484–1489

    Article  CAS  PubMed  Google Scholar 

  • Ueno Y, Aikawa S, Kondo A, Akimoto S (2015) Light adaptation of the unicellular red alga Cyanidioschyzon merolae, probed by time-resolved fluorescence spectroscopy. Photosynth Res 125:211–218

    Article  CAS  PubMed  Google Scholar 

  • Ueno Y, Aikawa S, Kondo A, Akimoto S (2016) Energy transfer in cyanobacteria and red algae: confirmation of spillover in intact megacomplexes of phycobilisome and both photosystems. J Phys Chem Lett 7:3567–3571

    Article  CAS  PubMed  Google Scholar 

  • Yokono M, Murakami A, Akimoto S (2011) Excitation energy transfer between photosystem II and photosystem I in red algae: larger amounts of phycobilisome enhance spillover. Biochim Biophys Acta 1807:847–853

    Article  CAS  PubMed  Google Scholar 

  • Yokono M, Tomo T, Nagao R, Ito H, Tanaka A, Akimoto S (2012) Alterations in photosynthetic pigments and amino acid composition of D1 protein change energy distribution in photosystem II. Biochim Biophys Acta 1817:754–759

    Article  CAS  PubMed  Google Scholar 

  • Yokono M, Takabayashi A, Akimoto S, Tanaka A (2015a) A megacomplex composed of both photosystem reaction centres in higher plants. Nat Commun 6:6675

    Article  CAS  PubMed  Google Scholar 

  • Yokono M, Nagao R, Tomo T, Akimoto S (2015b) Regulation of excitation energy transfer in diatom PSII dimer: how does it change the destination of excitation energy? Biochim Biophys Acta 1847:1274–1282

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiji Akimoto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ueno, Y., Aikawa, S., Niwa, K. et al. Variety in excitation energy transfer processes from phycobilisomes to photosystems I and II. Photosynth Res 133, 235–243 (2017). https://doi.org/10.1007/s11120-017-0345-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-017-0345-3

Keywords

Navigation