Skip to main content
Log in

The use of chemical actinometry for the evaluation of the light absorption efficiency in scattering photopolymerizable miniemulsions

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Oil-in-water miniemulsions containing a mixture of monomers as the dispersed organic phase have been shown recently to be promising media for the development of photoinitiated polymerization processes. Albeit a crucial factor for a successful application, the efficiency of light absorption by the photoinitiator in these highly scattering systems is difficult to evaluate. In this work, a well-characterized water insoluble chemical actinometer (DFIS) replaced the oil-soluble photoinitiator, and was used as a probe and a model for UV light absorption in miniemulsions of variable droplet sizes and organic phase compositions (i.e. at different levels of scattered light). In the first step, the photon flux absorbed by the actinometer was determined in model miniemulsions based on an inert solvent (ethyl acetate), at a low oil phase content (3.0–6.0 wt%). For these low to moderately scattering systems, the photon flux absorbed by the actinometer in the miniemulsions was comparable to that in a homogeneous solution of ethyl acetate. In the second step, the absorbed photon flux was investigated in photopolymerizable miniemulsions (a mixture of acrylate monomers as oil phase). Surprisingly, in spite of much higher scattering coefficients than those found for ethyl acetate based miniemulsions of otherwise the same composition, the photon flux absorbed by the actinometer in photopolymerizable miniemulsions showed only a small decreasing trend. Such a result may be considered favorable for the further development of applications of photopolymerizations in miniemulsions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Charleux, and F. Ganachaud, Polymerizations in aqueous dispersed media, in Macromolecular Engineering, ed. K. Matyjaszewski, Y. Gnanou and L. Leibler, Wiley-VCH Verlag GmbH, Weinheim, 2007, vol. 1, pp. 605642.

    Google Scholar 

  2. N. J. Turro, M.–F. Chow, C.-J. Chung, C.-H. Tung, Magnetic field and magnetic isotope effects on photoinduced emulsion polymerization J. Am. Chem. Soc. 1983 105 1572–1577.

    Article  CAS  Google Scholar 

  3. X. Hu, J. Zhang and W. Yan, Preparation of transparent polystyrene nano-latexes by an UV-induced routine emulsion polymerization Polymer 2009 50 141–147.

    Article  CAS  Google Scholar 

  4. L. Liu and W. Yang, Photoinitiated, inverse emulsion polymerization of acrylamide: some mechanistic and kinetic aspects J. Polym. Sci., Part A: Polym. Chem. 2004 42 846–852.

    Article  CAS  Google Scholar 

  5. S. Mah, D. Lee, D. Koo and S. Kwon, Photo-induced emulsion polymerization of vinyl acetate in the presence of poly(oxyethylene) nonyl phenyl ether, a non-ionic emulsifier (II) J. Appl. Polym. Sci. 2002 86 2153–2158.

    Article  CAS  Google Scholar 

  6. S. E. Shim, Y. Shin, J. W. Jun, K. Lee, H. Jung and S. Choe, Living-free-radical emulsion photopolymerization of methyl methacrylate by a surface active iniferter (suriniferter) Macromolecules 2003 36 7994–8000.

    Article  CAS  Google Scholar 

  7. I. Capek, Photopolymerization of butyl acrylate microemulsion. Effect of reaction conditions and additives on fates of desorbed radicals Polym. J. 1996 28 400–406.

    Article  CAS  Google Scholar 

  8. G. David, F. Ozer, B. C. Simionescu, H. Zareie and E. Piskin, Microemulsion photopolymerization of methacrylates stabilized with sodium dodecyl sulphate and poly(N-acetylethylenimine) macromonomers Eur. Polym. J. 2002 38 73–78.

    Article  CAS  Google Scholar 

  9. L. Wang, X. Liu and Y. Li, Synthesis and evaluation of a surface-active photoinitiator for microemulsion polymerization Macromolecules 1998 31 3446–3453.

    Article  CAS  Google Scholar 

  10. K. Jain, J. Klier and A. B. Scranton, Photopolymerization of butyl acrylate-in-water microemulsions: polymer molecular weight and end-groups Polymer 2005 46 11273–11278.

    Article  CAS  Google Scholar 

  11. P.-L. Kuo, N. J. Turro, C.-M. Tseng, M. S. El-Aasser and J. W. Vanderhoff, Photoinitiated polymerization of styrene in microemulsions Macromolecules 1987 20 1216–1221.

    Article  CAS  Google Scholar 

  12. L. Wang, X. Liu and Y. Li, Microemulsion polymerization of styrene using surface-active peresters as photoinitiators Langmuir 1998 14 6879–6885.

    Article  CAS  Google Scholar 

  13. J. Tonnar, E. Pouget, P. Lacroix-Desmazes and B. Boutevin, Synthesis of poly(vinyl acetate)-block-poly(dimethylsiloxane)-block-poly(vinyl acetate) copolymers by iodine transfer photopolymerization in miniemulsion Macromol. Symp. 2009 281 20–30.

    Article  CAS  Google Scholar 

  14. A. V. Fuchs and G. D. Will, Photo-initiated miniemulsion polymerization as a route to the synthesis of gold nanoparticle encapsulated latexes Polymer 2010 51 2119–2124.

    Article  CAS  Google Scholar 

  15. I. Capek, Photopolymerization of alkyl(meth)acrylates and polyoxyethylene macromonomers in fine emulsions Eur. Polym. J. 2000 36 255–263.

    Article  CAS  Google Scholar 

  16. J. Dou, Q. Zhang, L. Jian and J. Gu, Magnetic nanoparticles encapsulated latexes prepared with photo-initiated miniemulsion polymerization Colloid Polym. Sci. 2010 288 1751–1756.

    Article  CAS  Google Scholar 

  17. A. Chemtob, B. Kunstler, C. Croutxé-Barghorn and S. Fouchard, Photoinduced miniemulsion polymerization Colloid Polym. Sci. 2010 288 579–587.

    Article  CAS  Google Scholar 

  18. P. A. Hoijemberg, A. Chemtob, C. Croutxé-Barghorn, J. Poly and A. M. Braun, Radical photopolymerization in miniemulsions. Fundamental investigations and technical development Macromolecules 2011 44 8727–8738.

    Article  CAS  Google Scholar 

  19. P. A. Hoijemberg, A. Chemtob, C. Croutxé-Barghorn, Two routes towards photoinitiator-free photopolymerization in miniemulsion: acrylate self-initiation and photoactive surfactant Macromol. Chem. Phys. 2011 212 2417–2422.

    Article  CAS  Google Scholar 

  20. I. Capek, C.-S. Chern, Radical polymerization in direct mini-emulsion systems Adv. Polym. Sci. 2001 155 101–165.

    Article  CAS  Google Scholar 

  21. J. M. Asua, Miniemulsion polymerization Prog. Polym. Sci. 2002 27 1283–1346.

    Article  CAS  Google Scholar 

  22. K. Landfester, N. Bechthold, F. Tiarks and M. Antonietti, Formulation and stability mechanisms of polymerizable miniemulsions Macromolecules 1999 32 5222–5228.

    Article  CAS  Google Scholar 

  23. J. M. Asua, Challenges for industrialization of miniemulsionpolymerization Prog. Polym. Sci. 2014 39 1797–1826.

    Article  CAS  Google Scholar 

  24. F. Jasinski, E. Lobry, A. Chemtob, C. Croutxé-Barghorn and A. Criqui, Photopolymerizable monomer miniemulsions: why does droplet size matter? Macromol. Chem. Phys. 2013 214 1669–1676.

    Article  CAS  Google Scholar 

  25. L. Sun and J. R. Bolton, Determination of the quantum yield for the photochemical generation of hydroxyl radicals in TiO2 suspensions J. Phys. Chem. 1996 100 4127–4134.

    Article  CAS  Google Scholar 

  26. E. Lobry, F. Jasinski, M. Penconi, A. Chemtob, C. Ley, C. Croutxé-Barghorn, E. Oliveros, A. M. Braun and A. Criqui, Absorption and scattering in concentrated monomer miniemulsions: static and dynamic investigations Macromol. Chem. Phys. 2014 215 1201–1211.

    Article  CAS  Google Scholar 

  27. F. D. Lewis, R. T. Lauterbach, H.-G. Heine, W. Hartmann and H. Rudolphz, Photochemical a-cleavage of benzoin derivatives. Polar transition states for free-radical formation J. Am. Chem. Soc. 1975 97 1519–1525.

    Article  CAS  Google Scholar 

  28. N. K. Shrestha, E. J. Yagi, Y. Takatori, A. Kawai, Y. Kajii, K. Shibuya and K. Obi, Photochemical a-cleavage reaction of benzoin and its derivatives J. Photochem. Photobiol. A 1998 116 179–185.

    Article  CAS  Google Scholar 

  29. M. Lipson and N. J. Turro, Picosecond investigation of the effect of solvent on the photochemistry of benzoin J. Photochem. Photobiol. A 1996 99 93–96.

    Article  CAS  Google Scholar 

  30. C. Autran, J. C. de la Cal and J. M. Asua, (Mini)emulsion polymerization kinetics using oil-soluble initiators Macromolecules 2007 40 6233–6238.

    Article  CAS  Google Scholar 

  31. C. Wang, J. Rabani, D. W. Bahnemann and J. K. Dohrmann, Photonic efficiency and quantum yield of formaldehyde formation from methanol in the presence of various TiO2 photocatalysts J. Photochem. Photobiol. A 2002 148 169–176.

    Article  CAS  Google Scholar 

  32. N. Serpone and A. Salinaro, Terminology, relative photonic efficiencies and quantum yields in heterogeneous photocatalysis. Part I: Suggested protocol Pure Appl. Chem. 1999 71 303–320.

    Article  CAS  Google Scholar 

  33. A. Salinaro, N. Serpone, A. Emeline, V. Ryabchuk and H. Hidaka, Terminology, relative photonic efficiencies and quantum yields in heterogeneous photocatalysis. Part II: Experimental determination of quantum yields Pure Appl. Chem. 1999 71 321–335.

    Article  CAS  Google Scholar 

  34. R. J. Brandi, M. A. Citroni, O. M. Alfano and A. E. Cassano, Absolute quantum yields in photocatalytic slurry reactors Chem. Eng. Sci. 2003 58 979–985.

    Article  CAS  Google Scholar 

  35. M. L. Satuf, R. J. Brandi, A. E. Cassano and O. M. Alfano, Experimental method to evaluate the optical properties of aqueous titanium dioxide suspensions Ind. Eng. Chem. Res. 2005 44 6643–6649.

    Article  CAS  Google Scholar 

  36. H. J. Kuhn, S. E. Braslavsky and R. Schmidt, Chemical actinometry. IUPAC technical report Pure Appl. Chem. 2004 76 2105–2146.

    Article  CAS  Google Scholar 

  37. S. E. Braslavsky, et al., Glossary of terms used in photochemistry 3rd edition (IUPAC recommendations 2006) Pure Appl. Chem. 2007 79 293–465. and references therein.

    Article  CAS  Google Scholar 

  38. M. I. Cabrera, O. M. Alfano and A. E. Cassano, Absorption and scattering coefficients of titanium dioxide particulate suspensions in water J. Phys. Chem. 1996 100 20043–20050.

    Article  CAS  Google Scholar 

  39. A. M. Braun, M.-T. Maurette, and E. Oliveros, Photochemical Technology, Wiley, Chichester, 1991, ch. 2.

    Google Scholar 

  40. H. G. Heller, Development of photochromic compounds for use in optical information stores Chem. Ind. 1978 193.

    Google Scholar 

  41. H. G. Heller and J. R. Langan, Photochromic heterocyclic fulgides. Part 3. The use of (E)-a-(2,5-dimethyl-3-furylethylidene)(isopropylidene)succinic anhydride as a simple convenient chemical actinometer J. Chem. Soc., Perkin Trans. 2 1981 341–343.

    Google Scholar 

  42. H. G. Heller and J. R. Langan, A new reusable chemical actinometer EPA Newsl. 1981 71–73.

    Google Scholar 

  43. Y. Yokoyama, H. Hayata, H. Ito and Y. Kurita, Photochromism of a furylfulgide, 2-[1-(2,5-dimethyl-3-furyl)ethylidene]-3-isopropylidenesuccinic anhydride in solvents and polymer films Bull. Chem. Soc. Jpn. 1990 63 1607–1610.

    Article  CAS  Google Scholar 

  44. P. Boule and J. F. Pilichowski, Comments about the use of AberchromeTM 540 in chemical actinometry J. Photochem. Photobiol. A 1993 71 51–53.

    Article  CAS  Google Scholar 

  45. E. Uhlmann and G. Gauglitz, New aspects in the photokinetics of Aberchrome 540 J. Photochem. Photobiol. A 1996 98 45–49.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther Oliveros.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c4pp00323c

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Penconi, M., Lobry, E., Jasinski, F. et al. The use of chemical actinometry for the evaluation of the light absorption efficiency in scattering photopolymerizable miniemulsions. Photochem Photobiol Sci 14, 308–319 (2015). https://doi.org/10.1039/c4pp00323c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c4pp00323c

Navigation