Skip to main content
Log in

Polymerization of alkyl methacrylate nanoemulsions made by the phase inversion temperature method

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The polymerization of several alkyl methacrylates in nanoemulsions made by the phase inversion temperature method is presented here. The temperature versus surfactant concentration fish-like phase diagrams for a fixed mixture of alkyl methacrylate/squalane (SQ) of 95/5 w/w, Brij 56 and water were elaborated. Reaction rates were extremely fast (ca. 100% conversion in less than 3 min), and only two reaction rate intervals were observed, which is typical of nanoemulsion polymerization. It suggests that chain transfer to monomer is the main termination mechanism. The addition of squalane inhibits monomer diffusion from small droplets to larger ones and prevents the diffusion of monomer from non-reacting droplets to reacting ones, which guarantees that each monomer droplet acted as a nanoreactor. Polymer particles have similar size than the original nanoemulsion droplets indicating that the nanodroplets act as templates for the formation of the polymer nanoparticles. Reaction rates, as well as kinetics and nanoparticle characterizations by quasielastic light scattering (QLS), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and gel permeation chromatography (GPC), are reported. Spheroidal nanoparticles with similar sizes and narrow distribution were observed by TEM for poly(ethyl methacrylate), poly(butyl methacrylate), and poly(hexyl methacrylate). The large molar masses and the narrow molar mass distributions were obtained by gel permeation chromatography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mailänder V, Landfester K (2009) Interaction of nanoparticles with cells. Biomacromolecules 10:2379–2400. https://doi.org/10.1021/bm900266r

    Article  Google Scholar 

  2. Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36:R167–R181. https://doi.org/10.1088/0022-3727/36/13/201

    Article  CAS  Google Scholar 

  3. Hawker CJ, Wooley KL (2005) The convergence of synthetic organic and polymer chemistries. Science 309:1200–1205. https://doi.org/10.1126/science.1109778

    Article  CAS  Google Scholar 

  4. Jang J, Bae J, Ko S (2005) Synthesis and curing of poly(glycidyl methacrylate) nanoparticles. J Polym Sci A Polym Chem 43:2258–2265. https://doi.org/10.1002/pola.20706

    Article  CAS  Google Scholar 

  5. Carrillo A, Yanjarappa MJ, Gujraty KV, Kane RS (2006) Biofunctionalized block copolymer nanoparticles based on ring-opening metathesis polymerization. J Polym Sci Part A: Polym Chem 44:928–939. https://doi.org/10.1002/pola.21219

    Article  CAS  Google Scholar 

  6. Tagne JB, Kakumanu S, Ortiz D, Shea T, Nicolosi R (2008) A nanoemulsion formulation of tamoxifen increases its efficacy in a breast cancer cell line. Mol Pharm 5:280–286. https://doi.org/10.1021/mp700091j

    Article  CAS  Google Scholar 

  7. Striegler S (2009) Emulsion and miniemulsion polymers in catalysis. Mini-Rev Org Chem 6:234–240. https://doi.org/10.2174/157019309788922757

    Article  CAS  Google Scholar 

  8. Wang X, Summers CJ, Wang ZL (2004) Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays. Nano Lett 4:423–426. https://doi.org/10.1021/nl035102c

    Article  CAS  Google Scholar 

  9. Jang J (2006) Conducting polymer nanomaterials and their applications. In: Klemm D (ed) Emissive materials nanomaterials. Springer Verlag Berlin Heidelberg, Germany, pp. 189–260

    Chapter  Google Scholar 

  10. Jang J, Oh JH (2005) Fabrication of a highly transparent conductive thin film from polypyrrole/poly(methyl methacrylate) core/shell nanospheres. Adv Funct Mater 15:494–502. https://doi.org/10.1002/adfm.200400095

    Article  CAS  Google Scholar 

  11. Zhao J, Yang F, Chen Z, Diao H, Chu F, Yu S, Lu J (2008)) Microemulsion polymerization of cationic pyrroles bearing an imidazolum-ionic liquid moiety. J Polym Sci Part A Chem Ed 47:746–753. https://doi.org/10.1002/pola.23190

    Article  Google Scholar 

  12. Chern CS (2008) Principles and applications of emulsion polymerization. Wiley, Hoboken,

    Book  Google Scholar 

  13. Puig JE, Mendizábal E, López-Serrano F, López RG (2012) In: Somasundaram P (ed) Encyclopedia of surface and colloid science. Taylor and Francis, New York,

    Google Scholar 

  14. Crespy D, Landfester K (2010) Miniemulsion polymerization as a versatile tool for the synthesis of functionalized polymers. Beilstein J Org Chem 6:1132–1148. https://doi.org/10.3762/bjoc.6.130

    Article  CAS  Google Scholar 

  15. Rao JP, Geckeler KE (2011) Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci 36:887–913. https://doi.org/10.1016/j.progpolymsci.2011.01.001

    Article  CAS  Google Scholar 

  16. Galindo-Alvarez J, Boyd D, Marchal P, Tibet C, Perrin P, Marie-Bégué E, Durand A, Sadlter V (2011) Miniemulsion polymerization templates: a systematic comparison between low energy emulsification (near-PIT) and ultrasound emulsification methods. Colloids Surf A Physicochem Eng Asp 374:134–141. https://doi.org/10.1016/j.colsurfa.2010.11.019

    Article  CAS  Google Scholar 

  17. Alvarado-Mendoza AG, Nolla J, Rabelero M, Pérez-Carrillo LA, Arellano M, Mendizábal E, Solans C, Puig JE (2013) Poly(hexyl methacrylate) nanoparticles templating in nanoemulsions-made by phase inversion temperature. J Macromol Sci Part A: Pure Appl Chem 50:385–391. https://doi.org/10.1080/10601325.2013.768119

    Article  Google Scholar 

  18. Schork FJ, Luo Y, Smulder W, Russum JP, Butté A, Fontenot K (2005) Miniemulsion polymerization. In: Okubo M (ed) Polymer particles. Springer-Verlag Berlin Heidelberg, Heidelberg, pp. 129–255

    Chapter  Google Scholar 

  19. Zhang J, Han B, Zhang C, Li W, Feng X (2008) Nanoemulsions induced by compressed gases. Angew Chem Int Ed 47:3012–3015. https://doi.org/10.1002/anie.200705362

    Article  CAS  Google Scholar 

  20. Zhao Y, Zhang J, Li W, Zhang C, Han B (2009) Synthesis of uniform hollow silica spheres with ordered mesoporous shells in a CO2 induced nanoemulsion. Chem Comm 17:2365–2367. https://doi.org/10.1039/B822375K

    Article  Google Scholar 

  21. Morales D, Gutierrez JM, García-Celma MJ, Solans YC (2003) A study of the relation between bicontinuous microemulsions and oil/water nano-emulsion formation. Langmuir 19:7196–7200. https://doi.org/10.1021/la0300737

    Article  CAS  Google Scholar 

  22. Salager JL (1988) In: Betcher P (ed) Encyclopedia of emulsion technology, vol 3. Marcel Dekker, New York, pp. 79–134

    Google Scholar 

  23. Sole I, Maestro A, González C, Solans C, Gutiérrez JM (2006) Optimization of nano-emulsion preparation by low-energy methods in an ionic surfactant system. Langmuir 22:8326–8332. https://doi.org/10.1021/la0613676

    Article  CAS  Google Scholar 

  24. Wang L, Mutch KJ, Esstoe J, Heenan RK, Dong J (2008) Nanoemulsions prepared by a two-step low-energy process. Langmuir 24:6092–6099. https://doi.org/10.1021/la800624z

    Article  CAS  Google Scholar 

  25. Lamaallam S, Bataller H, Dicharry C, Lachaise J (2005) Formation and stability of miniemulsions produced by dispersion of water/oil/surfactants concentrates in a large amount of water. Coll Surf A 270-271:44–51. https://doi.org/10.1016/j.colsurfa.2005.05.035

    Article  CAS  Google Scholar 

  26. Nishimi T, Miller CA (2000) Spontaneous emulsification of oil in aerosol-OT/water/hydrocarbon systems. Langmuir 16:9233–9241. https://doi.org/10.1021/la0006521

    Article  CAS  Google Scholar 

  27. Chen S, Guo Y, Zetterlund PB (2010) Miniemulsion polymerization based on low energy emulsification with preservation of initial droplet identity. Macromolecules 43:7905–7907. https://doi.org/10.1021/ma101574x

    Article  Google Scholar 

  28. Spernath L, Magdassi S (2007) A new method for preparation of poly-lauryl acrylate nanoparticles from nanoemulsions obtained by the phase inversion temperature process. Polym Adv Tech 18:705–711. https://doi.org/10.1002/pat.947

    Article  CAS  Google Scholar 

  29. Alvarado AG, Pérez-Carrillo LA, Arellano M, Rabelero M, Ceja I, Mendizábal E, Solans C, Esquena J, Puig JE (2013) Polymerization of hexyl methacrylate in nanoemulsions made by low and high energy methods. J Macromol Sci Part A: Pure Appl Chem 50:812–820. https://doi.org/10.1080/10601325.2013.802147

    Article  CAS  Google Scholar 

  30. Hutchinson RA, Beuermann S, Paquet Jr DA, McMinn JH (1997) Determination of free-radical propagation rate coefficients for alkyl Methacrylates by pulsed-laser polymerization. Macromolecules 30:3490–3493. https://doi.org/10.1021/ma970176u

    Article  CAS  Google Scholar 

  31. Kunieda H, Shinoda KJ (1985) Evaluation of the hydrophile-lipophile balance (HLB) of nonionic surfactants. I. Multisurfactant systems. Colloid Interface Sci 107:107–121. https://doi.org/10.1016/0021-9797(85)90154-7

    Article  CAS  Google Scholar 

  32. Kahlweit M, Strey R, Firman P, Hasse D, Jen J, Schomaker R (1998) General patterns of the phase behavior of mixtures of water, nonpolar solvents, amphiphiles, and electrolytes 1. Langmuir 4:499–511. https://doi.org/10.1021/la00081a002

    Article  Google Scholar 

  33. Andrews RJ, Grulke EA (1999) In: Brandrup J, Immergut EH, Grulke EA (eds) Polymer handbook, vol I. 4th edn. Wiley, Hoboken, pp. VI/193–VI/277

    Google Scholar 

  34. Capek I, Juraničová V (1998) On the free-radical microemulsion polymerization of alkyl methacrylates. Eur Polym J 34:783–788. https://doi.org/10.1016/S0014-3057(97)00196-1

    Article  CAS  Google Scholar 

  35. Ovando-Medina VM, Corona-Rivera MA, Márquez-Herrera A, Lara-Cisneros TE, Manríquez-González R, Peralta RD (2014) Heterophase polymerization of different methacrylates: effect of alkyl ester group on kinetics and colloidal behavior. J Appl Polym Sci 131:1–8. https://doi.org/10.1002/app.40191

    Article  Google Scholar 

  36. Morgan JD, Lusvardi KM, Kaler EW (1997) Kinetics and mechanics of microemulsion polymerization of hexyl methacrylate. Macromolecules 30:1897–1905. https://doi.org/10.1021/ma9613704

    Article  CAS  Google Scholar 

  37. Katime I, Arellano J, Mendizábal E, Puig J (2001) Synthesis and characterization of poly(n-hexyl methacrylate) in three-component microemulsions. Eur Polym J 37:2273–2279. https://doi.org/10.1016/S0014-3057(01)00122-7

    Article  CAS  Google Scholar 

  38. Jansen TGT, Meuldijk J, Lovell PA, Van Herk AM (2016) On the polymerization of very hydrophobic monomers initiated by a completely water-insoluble initiator: thermodynamics, kinetics and mechanism. J Polym Sci Part A: Polym Chem 54:2731–2745. https://doi.org/10.1002/pola.28155

    Article  CAS  Google Scholar 

  39. Jašo V, Radičević R, Stoiljković D (2010) Analysis of DSC curve of dodecyl methacrylate polymerization by two-peak deconvolution method. J Therm Anal Calorim 101:1059–1063. https://doi.org/10.1007/s10973-009-0594-2

    Article  Google Scholar 

Download references

Funding

This study was funded by Universidad de Guadalajara (grant # UDG-P3E-235161).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abraham G. Alvarado.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvarado, A.G., Hernández-Montelongo, R., Rabelero, M. et al. Polymerization of alkyl methacrylate nanoemulsions made by the phase inversion temperature method. Colloid Polym Sci 295, 2243–2249 (2017). https://doi.org/10.1007/s00396-017-4194-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-017-4194-6

Keywords

Navigation